

FACULTY OF

SCIENCE

COURSE STRUCTURE & SYLLABUS

M. Sc. BIOTECHNOLOGY (INDUSTRIAL BIOTECHNOLOGY)

Aegis: Charutar Vidya Mandal (Estd.1945)

Effective from Academic Year: 2022-23

Faculty Name: Science

Programme Name:

M. Sc. Biotechnology (Industrial Biotechnology)

Programme Structure Summary

		SE	EMEST	ER 1							
		_	Т	eachir	ıg Sche	eme	INT(T)	EXT(T)	INT(P)	EXT(P)	Grand Total
Course Group	Course Name	Cr	Т	Р	Tu	Cont. Hrs	Passing	Max./ Passing	Max./ Passing	Max./ Passing	Max./ Passing
Core	Cell Communication & Cell Signaling	4	3		1	4	50/20	50/20			100/40
Core	Biodegradation & Bioremediation	4	3		1	4	50/20	50/20			100/40
Core	Food Biotechnology	4	3		1	4	50/20	50/20			100/40
Core	Lab – I (Cell Communication & Cell Signaling and Biodegradation & Bioremediation)	4		8		8			50/20	50/20	100/40
Core	Lab – II (Food Biotechnology & Elective Course)	4		8		8			50/20	50/20	100/40
	Plant Biotechnology	4	3		1	4	50/20	50/20			100/40
Elective	Microbial Technology	4	3		1	4	50/20	50/20			100/40
(Any One)	Environmental Chemistry	4	3		1	4	50/20	50/20			100/40
	Clinical Biochemistry	4	3		1	4	50/20	50/20			100/40
Viva-Voce	Comprehensive Viva	1								50/20	50/20
	Total	25									

	SEMESTER 2										
			Т	eachin	ıg Sche	eme	INT(T)	EXT(T)	INT(P)	EXT(P)	Grand Total
Course Group	Course Name	Cr	Т	Р	Tu	Cont. Hrs	Max./ Passing	Max./ Passing	Max./ Passing	Max./ Passing	Max./ Passing
Core	Industrial Waste Management	4	3		1	4	50/20	50/20			100/40
Core	Bioprocess Engineering and Technology	4	3		1	4	50/20	50/20			100/40
Core	0'-mics	4	3		1	4	50/20	50/20			100/40
Core	Lab – I (Industrial Waste Management and Bioprocess Engineering and Technology)	4		8		8			50/20	50/20	100/40
Core	Lab – II (O'-mics & Elective Course)	4		8		8			50/20	50/20	100/40
	Animal Biotechnology	4	3		1	4	50/20	50/20			100/40
Elective	Bioseperation Technology	4	3		1	4	50/20	50/20			100/40
(Any One)	Protein Engineering	4	3		1	4	50/20	50/20			100/40
	Environment Policy and Legislation	4	3		1	4	50/20	50/20			100/40
Viva-Voce	Comprehensive Viva	1								50/20	50/20
	Total	25									

		S	EMEST	TER 3							
Course			Т	eachin	ıg Sche	eme	INT(T)	EXT(T)	INT(P)	EXT(P)	Grand Total
Group	Course Name	Cr	Т	Р	Tu	Cont. Hrs	Max./ Passing	Max./ Passing	Max./ Passing	Max./ Passing	Max./ Passing
Core	Drug Design and Development	4	3		1	4	50/20	50/20			100/40
Core	Material Balance, Mass Transfer and Transport Process	4	3		1	4	50/20	50/20			100/40
Core	Metabolic Engineering	4	3		1	4	50/20	50/20			100/40
Core	Lab – I (Drug Design and Development and Material Balance, Mass Transfer and Transport Process)	4		8		8			50/20	50/20	100/40
Core	Lab – II (Metabolic Engineering and Elective Course)	4		8		8			50/20	50/20	100/40
	Environmental Engineering	4	3		1	4	50/20	50/20			100/40
Elective	Nanobiotechnology & Applications	4	3		1	4	50/20	50/20			100/40
(Any One)	Cancer Genetics	4	3		1	4	50/20	50/20			100/40
	Validation, Documentation and cGMP	4	3		1	4	50/20	50/20			100/40
Viva-Voce	Comprehensive Viva	1								50/20	50/20
	Total	25									

	SEMESTER 4										
Course Group	Course Name	C-1	Т	eachin	ıg Sche	eme	INT(T)	EXT(T)	INT(P)	EXT(P) Max./ Passing	Grand Total
		Cr	Т	Р	Tu	Cont. Hrs	Passing	Passing	Max./ Passing		Max./ Passing
Core	Biosafety, Bioethics & IPR	4	3		1	4	50/20	50/20			100/40
Core	Bioinformatics	4	3		1	4	50/20	50/20			100/40
Core	Lab – I (Biosafety, Bioethics & IPR and Bioinformatics)	4		8		8			50/20	50/20	100/40
Elective	Dissertation	12								300/120	300/120
Viva-Voce	Comprehensive Viva	1								50/20	50/20
	Total	25									

Programme Outcomes

PO-1	Students will be able to understand about cell communication & cell signaling,
	biodegradation & bioremediation, food biotechnology and related practical
	knowledge
PO-2	Students will be able to aware of the subjects like plant biotechnology, microbial
	technology, environmental chemistry, clinical biochemistry and their related
	practical knowledge
PO-3	Students will be able to understand about Industrial waste management, bioprocess
	engineering and technology, O'-mics and practical knowledge and their related
	practical knowledge
PO-4	Students will be able to aware of the subjects like animal biotechnology,
	bioseperation technology, protein engineering, environment policy and legislation
	and their related practical knowledge
PO-5	Students will be able to understand drug design and development, material balance,
	mass transfer and transport process, metabolic engineering and their related
	practical knowledge
P0-6	Students will be able to aware of the subjects like environmental engineering,
	nanobiotechnology & applications, cancer genetics, validation, documentation and
	cGMP and their related practical knowledge
PO-7	Students will be able to know biosafety, bioethics & IPR for the protection of
	scientific experiments and bioinformatics tools to develop the new drug and their
	targets.
PO-8	The dissertation work will allow the students to gather the knowledge about the
	research or scientific experiments.

 Faculty Name:
 Science

 Programme
 M. Sc. Biotechnology (Industrial Biotechnology)

 Name:
 Academic Batch:

 Semester:
 1

Course Group	Board of Studies / Faculty Ownership	Course Code	Course Name		Teaching Scheme			eme	Assessment/ Evaluation Type		External Exam Duration (Hrs.)		INT(T) Max./ Passing	EXT(T) Max./ Passing	INT(P) Max./ Passing	EXT(P) Max./ Passing	Grand Total Max./
					Т	Р	Tu	Cont. Hrs	Т	Р	Т	Р	1 ussing	1 ussing	i ussing	i ussing	Passing
Core	Biological Science	301420101	Cell Communication & Cell Signaling	4	3		1	4	Т		2		50/20	50/20			100/40
Core	Biological Science	301420104	Biodegradation & Bioremediation	4	3		1	4	Т		2		50/20	50/20			100/40
Core	Biological Science	301420105	Food Biotechnology	4	3		1	4	Т		2		50/20	50/20			100/40
Core	Biological Science	301420113	Lab – I (Cell Communication & Cell Signaling and Biodegradation & Bioremediation)	4		8		8		Р		3			50/20	50/20	100/40
Core	Biological Science	301420114	Lab – II (Food Biotechnology & Elective Course)	4		8		8		Р		3			50/20	50/20	100/40
	Biological Science	301420121	Plant Biotechnology	4	3		1	4	Т		2		50/20	50/20			100/40
Elective	Biological Science	301420122	Microbial Technology	4	3		1	4	Т		2		50/20	50/20			100/40
One)	Biological Science	301420123	Environmental Chemistry	4	3		1	4	Т		2		50/20	50/20			100/40
-	Biological Science	301420124	Clinical Biochemistry	4	3		1	4	Т		2		50/20	50/20			100/40
Viva-Voce	Biological Science	301420117	Comprehensive Viva	1												50/20	50/20
			Total	25													

T = Theory, P = Practical, Tu = Tutorial

Name & Sign [Chairman - Board of Studies]:

Name & Sign [Dean / Director]:

Effective from Academic Batch: 2022-23

Programme:	M. Sc. Biotechnology (Industrial Biotechnology)
Semester:	1
Course Code:	301420101
Course Title:	Cell Communication & Cell Signaling
Course Group:	CORE

Course Objectives: Students should learn about

- 1. Membrane structure, transport across it, intracellular vesicular traffic
- 2. Cytoskeletal structures, cell cycle
- 3. Various signaling pathways in living system, types of receptors
- 4. Pathways of intracellular transduction

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passing)									
Locture Tutorial Dractical		Credits	The	eory	J/V	Total							
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total					
3	1		4	50/20	50/20			100/40					

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	Cell-cell and cell-matrix adhesion:	15
	Cell adhesive molecules, cell junctions, cadherins mediate cell-cell adhesion,	
	Desmosomes, Tight junction	
	Integrins Mediate cell-ECM adhesion, Gap junction, Plasmodesmata	
	Basal lamina and extra cellular matrix.	
	Cell Cycle – Phases of Cell Cycle, functional importance of each phase, Molecular	
	events during cell cycle, Checkpoints.	
	General account on programmed cell death (Apoptosis) - intrinsic and extrinsic	
	pathways	

2	Mechanisms of Cell communication:	15						
	General principles of cell communication, Introduction to signalling Receptors							
	(GPCRs, Ion Channel Coupled receptors, Enzyme coupled receptors) and ligands,							
	Signalling through G-protein coupled receptors (GPCRs) - Adenylyl Cyclase,							
	Phospholipase C and small mediators, heterotrimeric G-proteins, : effectors,							
	Secondary messenger: NO , Calcium, cAMP							
	Tyrosine kinase receptors, Cytokine receptors, Src kinases							
3	Pathways of intracellular transduction: Wnt and Hedgehog Signaling,	15						
	Notch/Delta signaling, ras/MAPK pathways, Mitogenicsignaling Cytokine							
	signaling/JAK-STAT/mTOR, NFkappa B signaling, TGF Beta signaling, PI3-kinase							
	Lipid Signaling							
4	Host Parasite interaction:	15						
	Recognition and entry process of different pathogens like bacteria, viruses into							
	cells.							
	Alteration of host cell behavior by pathogens.							
	Cancer: Genetic rearrangement in progenitor cells, oncogenes, tumor suppressor							
	genes							

1	Cell and Molecular Biology by E.D.P.DeRobertis and E.M.P.DeRobertis. 8th Edition, Reprinted
	-2007) B.I.PublicationsPvt. Ltd.(Indian Edition).ISBN: 0-7817-3493-2.
2	Cell and Molecular Biology: Concepts and Experiments by Gerald Karp.5th Edition, Wiley
	International Edition, John Wiley&Sons,Inc. ISBN: 0-471-65665-8.
3	Molecular Biology of THE CELL by Albert et al.4th Edition, 2002, Garland Science, Taylor &
	Francis Group. ISBN: 0-8153-3218-1
4	The Cell – A Molecular Approach by Geoffrey M. Cooper and Robert E. Hassman. 3rd Edition,
	2004, ASM Press, Sinauer Associates, Inc.ISBN:0-87893-214-3.
5	Molecular cell Biology by Harvey Lodish, 5th Edition, (2004) W.H.Freeman and Company,
	New York.ISBN:0-7167-4366-3.
6	Cell Biology by C.B. Powar.(Reprinted-2004)Himalaya Publishing House, Mumbai.
7	Cell Biology, Genetics, Molecular Biology, Evolution and Ecology by P.S. Verma and V.K.
	Agarwal(Reprinted -2007) Pub.S.Chand& Company Ltd.Ram Nagar, New Delhi.
8	Cytology by P.S. Verma and V.K. Agarwal (Reprinted -2006) Pub:S.Chand& Company
	Ltd.Ram Nagar, New Delhi-110055.ISBN: 81-219-0814-0.

Sup	Supplementary learning Material:					
1	https://nptel.ac.in/					
2	https://swayam.gov.in/					
3	https://diksha.gov.in/					

Page **2** of **96**

4 https://epathshala.nic.in/

Pedagogy: Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %						R : Remembering; U : Understanding; A : Applying;
R	R U A N E C		С	N: Analyzing; E: Evaluating; C: Creating		
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Students should have thorough understanding of Membrane structure,	25
	transport across it, intracellular vesicular traffic	
CO-2	Cytoskeletal structures, cell cycle	25
CO-3	Various signaling pathways in living system, types of receptors	25
CO-4	Pathways of intracellular transduction	25

Curriculum Revision:				
Version:	2 nd			
Drafted on (Month-Year):	June 2022			
Last Reviewed on (Month-Year):	September 2022			
Next Review on (Month-Year):	April 2023			

Page **3** of **96**

Effective from Academic Batch: 2022-23

Programme:	M. Sc. Biotechnology (Industrial Biotechnology)
Semester:	1
Course Code:	301420104
Course Title:	Biodegradation & Bioremediation
Course Group:	CORE

Course Objectives: At the end of this course, the student will be able to:

- 1 Introduction to biodegradation, enzymes involved, degradation of hydrocarbons,
- 2 Microbial transformation of pesticides, degradation of woods, degradation of some VOC
- 3 Bioremediation of soil and water pollutants
- 4 Various bioremediation strategies, bioremediation of air pollutants

Teaching & Examination Scheme:

Conta	ct hours pe	er week	Course	Exam	Examination Marks (Maximum / Pas			sing)	
Locturo	Tutorial	Dractical	Credits	The	eory	J/V	/P*	Total	
Lecture	Tutorial	FIACUCAI		Internal	External	Internal	External	IUldi	
3	1		4	50/20	50/20			100/40	

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours						
1	Biodegradation-I: Introduction, Determination of biodegradability, Principles of							
	bacterial degradation, environmental factors affecting biodegradation, enzymes,							
	toxicity. Aerobic degradation of hydrocarbons, growth associated aliphatic							
	compound degradation, Degradation of Aromatic compounds. Anaerobic bacterial							
	degradation-biopolymer, fats, lipids, hydrocarbon, N-alkyl, S-alkyl, ketones							
	compound degradation.							

Page **4** of **96**

2	Biodegradation-II: Microbial transformation of pesticides, Fundamental reactions	15
	of pesticide metabolism- β -oxidation, oxidative dehalogenation, dealkylation,	
	decarboxylation, epoxidation. Aromatic Non-heterocyclic Ring Cleavage-	
	Hydrolysis, Halogen reaction, Nitro-reduction. Anaerobic degradation of 2,4 D,	
	2,4,5-T and PCB. Degradation of selected volatile organic compounds in ground	
	water-Chlorinated alkanes-PCE, PCA, TCA, TCE, DCA and CT (biotic, abiotic, aerobic	
	and anaerobic transformations).	
3	Overview of bioremediation strategies, Ex Situ versus In Situ Bioremediation.	15
	Factors affecting bioremediation. In-situ bioremediation- Biosparging, Bioventing,	
	Bioaugmentation (Benefits, Limitation, Process and factors to consider). Ex-situ	
	Bioremediation- Land farming, composting, Biopiles. Bioreactors.	
	Phytoremediation: Types of phytoremediation technologies (phytoextraction,	
	phytostabilization, phytovolatilaztion, rhizodegradation, rhizofilteration).	
4	Use of bacteria fungi and algae in biosorption, Biomineralisation& Bioleaching:	15
	Microorganisms involved in Bioleaching of ores, mechanisms of bioleaching,	
	Bioleaching & Metal recovery. Molecular techniques in bioremediation, Role of	
	plasmids in bioremediation, Genetics and gene manipulation: Metagenomics in	
	Bioremediation, Bio-surfactants in bioremediation, Microbial surfactants.	
	Bioremediation of air pollutants-Microbial degradation of contaminants in gas	
	phase, Biofilteration, Biofilter media, Microbial ecology of biofilters.	
L		

1	Ronal L. Crawford, Don L. Crawford. Bioremediation: Principles and Applications. ISBN: 0521470412.
2	Anthony H. Rose. Microbial Biodeterioration. Academic Press. ISBN: 0125965567.
3	Dennis Allsopp, Kenneth J. Seal, Christine C. Gaylarde. Introduction to Biodeterioration. Cambridge University Press. ISBN 0521528879.
4	Alan Scragg. Environmental Biotechnology. 2nd Edition. Oxford Press. ISBN: 0-19926867-3.
5	Pradipta Kumar Mohaparta. Textbook of Environmental Biotechnology. I. K. International Publishing House Pvt. Ltd. ISBN: 81-88237-54-X.
6	R. Margesin and F. Schinner. Manual of Soil analysis: Monitoring and Assessing Soil Bioremediation. Springer Publishers ISBN: 3540253467.
7	James J. Valdes. Bioremediation Kluwer Academic Publishers ISBN 0792364597.
8	Subhas K. Sikdar and Robert L. Irvine Biodegradation Technology Developments Vol: II, Bioremediation: Principles and practice. CRC Press. ISBN-10: 1566763088.

Sup	Supplementary learning Material:					
1	https://nptel.ac.in/					
2	https://swayam.gov.in/					
3	https://diksha.gov.in/					
4	https://epathshala.nic.in/					

Pedagogy:

Direct Classroom teaching
Audiovisual
Assignments/Quiz
Feedback
Interactive participating methods
Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %				larks i	n %	R : Remembering; U : Understanding; A : Applying;
R	R U A N E C		C	N: Analyzing; E: Evaluating; C: Creating		
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student will be able to explain	25
	biodegradation, enzymes involved, degradation of hydrocarbons,	
CO-2	Microbial transformation of pesticides, degradation of woods,	25
	degradation of some VOC	
CO-3	Bioremediation of soil and water pollutants	25
CO-4	Various bioremediation strategies, bioremediation of air pollutants	25

Curriculum Revision:					
Version:	2 nd				
Drafted on (Month-Year):	June 2022				
Last Reviewed on (Month-Year):	September 2022				
Next Review on (Month-Year):	April 2023				

Page **6** of **96**

Effective from Academic Batch: 2022-23

Programme:	M. Sc. Biotechnology (Industrial Biotechnology)
Semester:	1
Course Code:	301420105
Course Title:	Food Biotechnology
Course Group:	CORE

Course Objectives: At the end of this course, the student will be able to:

- 1 Opportunities and applications of food biotechnology
- 2 Probiotics and prebiotics: their significance and guidelines for use
- 3 Production of genetically modified foods, guidelines for their production and release
- 4 Application of biotechnology in improving nutritional value of food

Teaching & Examination Scheme:

Contact hours per week			Course	Exam	sing)			
Locturo	Tutorial	Practical	Credits	The	eory	J/V	/P* Total	
Lecture	TULUTIA			Internal	External	Internal	External	TULAI
3	1		4	50/20	50/20			100/40

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	Scope of food biotechnology	15
	Food as a substrate	
	Role of Microbes in food Biotechnology – Bacteria, yeasts and moulds	
	Food Spoilage	
	a) General principles underlying food spoilage and contamination.	
	b) Spoilage of canned food,vegetables, fruits, meat and meat products,milk and	
	milk products fish and seafood	

Page **7** of **96**

2	Food poisoning	15
_	Food horne nathogens	20
	a) Bacterial food horne infections and intovications- Brucella Campylobacter	
	Cleatridium Each orighia (ETEC /ELEC /ELEC /ELEC /ELEC /ELEC /ELEC	
	CIOSTITUIUM, ESCHETICHIA (ETEC/EHEC/EHEC/EHEC/EAEC), Saimonella, Shigelia, Listeria	
	and Vibrio	
	b) Non- bacterial food borne infections and intoxications- Protozoa, fungi& viruses	
3	a) Food preservation	15
	Principles of food preservation – Physical and chemical preservation methods,	
	Bio preservatives	
	b) Starter cultures for dairy &fermented foods	
	Oriental fermented foods: Shoyu and Tempeh	
	Fermented milk products: Yogurt and Kefir	
	Fermented vegetables – Sauerkraut	
4	Genetically modified foods	15
	Food research organizations/institutes in India	
	Food sanitation – Microbiology of food plant sanitation, water and milk testing	
	Food laws and quality control – HACCP, Codex Alimentarius, PFA, FPO, MFPO, BIS,	
	AGMARK.	

1	Food Microbiology, Frazier and Westhoff
2	Food microbiology, Adam and Moss
3	Dairy Microbiology by Robinson. Volume I and II.
4	Fundamental Food Microbiology, Bibek Ray and ArunBhuniya

Sup	Supplementary learning Material:				
1	https://nptel.ac.in/				
2	https://swayam.gov.in/				
3	https://diksha.gov.in/				
4	https://epathshala.nic.in/				

Pedagogy:

Direct Classroom teaching
Audiovisual
Assignments/Quiz
Feedback
Interactive participating methods
Seminar presentation

Page **8** of **96**

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %			larks i	n %	R : Remembering; U : Understanding; A : Applying;	
R	U	Α	Ν	Ε	C	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student will be able to: Opportunities	25
	and applications of food biotechnology	
CO-2	Probiotics and prebiotics: their significance and guidelines for use	25
CO-3	Production of genetically modified foods, guidelines for their production	25
	and release	
CO-4	Application of biotechnology in improving nutritional value of food	25

Curriculum Revision:					
Version:	2 nd				
Drafted on (Month-Year):	June 2022				
Last Reviewed on (Month-Year):	September 2022				
Next Review on (Month-Year):	April 2023				

Page **9** of **96**

Effective from Academic Batch: 2022-23

Programme:	M. Sc. Biotechnology (Industrial Biotechnology)
Semester:	1
Course Code:	301420113
Course Title:	Lab – I (Cell Communication & Cell Signaling and Biodegradation & Bioremediation)
Course Group:	CORE

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passi				sing)
Locturo	Tutorial	Practical	Credits	Theory		J/V/P*		Total
Lecture	Tutorial			Internal	External	Internal	External	Total
		8	4			50/20	50/20	100/40

* J: Jury; V: Viva; P: Practical

List of Practicals / Tutorials: Cell Communication & Cell Signaling

1	Mitosis preparation
2	Meiosis preparation
3	Histological localization of DNA and RNA
4	Histone protein localization
5	Nucleolus localization
6	Enzyme localization
7	Protein localization
8	Lipid localization
9	PAS reaction for GAG molecules

List of Practicals / Tutorials: Biodegradation & Bioremediation

1	Isolation of hydrocarbon degrading microorganisms.
2	Analysis of Chromium.
3	Analysis of iron.
4	Isolation of metal detoxifying microorganisms.
5	Study of biodegradation of aromatic compounds using TLC.

Page 10 of 96

6	Decolourization of dye.
7	Study of biofilm: slide immersion tech and staining

1	Cell Biology: Practical manual by Renu Gupta, Seema makhija& Ravi Toteja (2018) Prestige				
	Publishers ISBN978-81-936512-1-6.				
2	Baird, Rodger, and Laura. Bridgewater. 2017. Standard Methods for the Examination of				
	Water and Wastewater. Washington, D.C.: American Public Health Association.				
3	CPCB (2008) Guidelines for water quality monitoring. Parivesh Bhawan, Central Pollution				
	Control Board, New Delhi. MINARS/27/2007-08.				
	http://www.cpcb.nic.in/upload/NewItems/New				
4	Huang, Y.; Zhou, H.; Zheng, G.; Li, Y.; Xie, Q.; You, S.; Zhang, C. Isolation, and characterization				
	of biosurfactant-producing Serratiamarcescens ZCF25 from oil sludge and application to				
	bioremediation. Environ. Sci. Pollut. Res. 2020, 27, 27762–27772.				
5	A. Mittal and P. Singh, "Isolation of hydrocarbon degrading bacteria from soils contaminated				
	with crude oil spills," Indian Journal of Experimental Biology, vol. 47, pp. 760–765, 2009.				
6	Saikia, R.R.; Deka, S.; Deka, M.; Banat, I.M. Isolation of biosurfactant-producing Pseudomonas				
	aeruginosa RS29 from oil contaminated soil and evaluation of different nitrogen sources in				
	biosurfactant production. Ann. Microbiol. 2012, 62, 753–763.				

Sup	Supplementary learning Material:				
1	https://nptel.ac.in/				
2	https://swayam.gov.in/				
3	https://diksha.gov.in/				
4	https://epathshala.nic.in/				

Pedagogy:
Hands on training
Discussion with students
Demonstration
Model
Chart

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %				larks i	n %	R : Remembering; U : Understanding; A : Applying;			
R	U	Α	Ν	Ε	С	N: Analyzing; E: Evaluating; C: Creating			
25	25	15	15	15	05				
	-			-	_				

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Page **11** of **96**

Curriculum Revision:				
Version:	2 nd			
Drafted on (Month-Year):	June 2022			
Last Reviewed on (Month-Year):	September 2022			
Next Review on (Month-Year):	April 2023			

Page **12** of **96**

Effective from Academic Batch: 2022-23

Programme:	M. Sc. Biotechnology (Industrial Biotechnology)
Semester:	1
Course Code:	301420114
Course Title:	Lab – II (Food Biotechnology and Elective Course)
Course Group:	CORE

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Pas				sing)
Locturo	Tutorial	Practical	Credits	Theory		J/V/P*		Total
Lecture	Tutorial			Internal	External	Internal	External	Total
		8	4			50/20	50/20	100/40

* J: Jury; V: Viva; P: Practical

List of Practicals / Tutorials: Food Biotechnology (Core)

1	Microbiological examination of fresh and canned foods
2	Microbiological examination of spoiled foods and fruits.
3	Microbiological examination of milk by Breeds method
4	Microbiological quality testing of milk (MBRT test)
5	Extraction of Mycotoxins from contaminated grains/foods.
6	Detoxification of mycotoxins.
7	Isolation, Screening and Identification of bacterial probiotics like LAB
8	Isolation, Screening and Identification probiotic yeast
9	Microbiological examination of mushrooms

List of Practicals / Tutorials: Plant Biotechnology (Elective)

1	eparation of MS media for inoculation						
2	Micropropogation through nodal explants						
3	Callus induction						
4	Mass multiplication of banana						
5	Agrobacterium tumefaciens mediated plant transformation						

Page **13** of **96**

6	Protoplast isolation
7	Embryo dissection and culture
8	DNA isolation of plant material

List of Practicals / Tutorials: Microbial Technology (Elective)

1	roduction of cellulase enzyme by solid-state fermentation.					
2	Saccharification of agro-waste by cellulase enzyme.					
3	Bioassay of antibiotics					
4	Production of citric acid by submerged fermentation					
5	Production of protease by submerged fermentation.					
6	Single cell oil production by Yeast					
7	Production of Yoghurt					
8	Downstream processing of penicillin					

List of Practicals / Tutorials: Environmental Chemistry (Elective)

1	Spectrophotometric analysis of nitrate.						
2	Spectrophotometric analysis of nitrite.						
3	Analysis of ammonia.						
4	Determination of sulphate by turbidometric method.						
5	Determination of zinc by EDTA complexometic reaction.						
6	Analysis of Total Hardness, Ca ⁺² Hardness and Mg ⁺² Hardness.						
7	Analysis of Ca ⁺² from egg shell.						
8	Analysis of sulfite.						

List of Practicals / Tutorials: Clinical Biochemistry (Elective)

1	Preparation of standard solution, molar solution and other reagents						
2	Analysis of normal and abnormal urine						
3	Estimation of blood /serum glucose by various methods/ GTT						
4	lycosylated Hb, Hb Electrophoresis						
5	Estimation Bilirubin, direct, total						
6	Estimation of total protein and A/G ratio						
7	Electrophoresis of plasma proteins						
8	Estimation of total cholesterol and its fractions						
9	Estimation of total lipids						
10	Estimation of SGPT, SGOT						
11	Hormone estimation: Determination of T3 or T4 by ELISA						

Page **14** of **96**

1	Neelima Garg, K.L. Garg, K.G. Mukerji. (2013). Laboratory Manual of Food Microbiology.								
	ISBN: 9789389633023.								
2	Ahmed E. Yousef, Joy G. Waite-Cusic, Jennifer J. Perry. (2022). Analytical Food Microbiology: A								
	Laboratory Manual. ISBN: 9780470425114.								
3	Shalini Sehgal. (2020). A Laboratory Manual of Food Analysis. ISBN: 9789389633238.								
4	S.R. Thimmaiah (2009). Standard Methods of Biochemical Analysis. ISBN: 8176630675								
	9788176630672								
5	Experiments in microbiology, Plant Pathology and Biotechnology, K.R. Aneja New Age								
	International Publishers, New Delhi, ISBN 978-81-224-1494-3								
6	Practical Pharmaceutical Analytical Chemistry, Alam MM, Akhtar Mymoona, Husain Asif,								
	Shaquiquzzaman M								
7	Text books of Medical Laboratory Technology – Dr. Praful B. Godkar								
8	Research articles								

Supplementary learning Material:

1	https://nptel.ac.in/
2	https://swayam.gov.in/
3	https://diksha.gov.in/
4	https://epathshala.nic.in/

Pedagogy:	
Hands on training	
Discussion with students	
Demonstration	
Model	
Chart	

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

-	00									
Distribution of Theory Marks in %						n %	R : Remembering; U : Understanding; A : Applying;			
	R	U A N E C			Ε	С	N: Analyzing; E: Evaluating; C: Creating			
	25	25	15	15	15	05				

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Curriculum Revision:						
Version:	2 nd					
Drafted on (Month-Year):	June 2022					
Last Reviewed on (Month-Year):	September 2022					
Next Review on (Month-Year):	April 2023					

Page **15** of **96**

Effective from Academic Batch: 2022-23

Programme:	M. Sc. Biotechnology (Industrial Biotechnology)
	in bei Bieteennerogy (industrial Bieteennerogy)

Semester: 1

Course Code: 301420121

Course Title: Plant Biotechnology

Course Group: ELECTIVE

Course Objectives: The student should be able to understand and apply

- 1 Tools and techniques of plant genetic engineering
- 2 Molecular biology of nitrogen fixation, nif gene transfer, herbicide resistant plants production
- 3 Transgenic plants for agriculture and commercial applications
- 4 Plant tissue culture techniques

Teaching & Examination Scheme:

Conta	ct hours pe	er week	Course	Examination Marks (Maximum / Passing)				sing)
Locturo	Tutorial	Practical	Credits	Theory		J/V/P*		Total
Lecture	Tutoriai			Internal	External	Internal	External	Total
3	1		4	50/20	50/20			100/40

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	Plant biotechnology present scenario, Micropropogation and its application; Types	15
	of different organ culture and its application; Somaclonal variation: Introduction,	
	Different pathways of somaclonal variation; factor affecting of somaclonal	
	variation, Detection of somaclonal variation; Somaclonal variation its application in	
	crop improvement.	
2	Chloroplast transformation: Structure of chloroplast; Plastid chromosome;	15
	Transformation methods-Agrobacterium mediated transformation, Particle gun	
	method, Gene replacement, Gene insertion; Limitation of chloroplast	
	transformation; Application of chloroplast transformation.	

Page **16** of **96**

3	Secondary metabolite: Role of secondary metabolites, Basic biosynthetic pathways,	15
	Techniques used in biosynthesis, Source of secondary metabolites; criteria for cell	
	selection, factor affecting the culture of cells, Different bioreactors and their use in	
	secondary metabolites production, Production of bioactive secondary metabolites	
	by plant tissue culture.	
4	Transgenic plants production: Development of abiotic (Insect, Disease, Herbicide)	15
	and biotic (Drought) resistant plants.	
	Peptide production, biodegradable plastic and edible vaccine.	
	DNA barcoding in plants its application.	

1	An introduction to Plant Tissue culture by MK Razdan. M.K. 2003. Oxford & IBH Publishing
	Co, New Delhi, 2003.
2	Plant Biotechnology: An Introduction to Genetic Engineering by Adrian Slater, Nigel W. Scott,
	Mark R. Fowler. Oxford University Press, 2008.
3	Biochemistry & Molecular Biology of Plants. Bob Buchanan, Wilhelm Gruissem, Russell
	Jones. John Wiley & Sons, 2002
4	Plant biotechnology – J Hammond, et. al., Springer Verlag.
5	Plant cell and tissue culture for production of food ingredients – T J Fu, G Singh, et. al.
6	Biotechnology in crop improvement – H S Chawla.
7	Practical application of plant molecular biology – R J Henry, Chapman & Hall. 34 Elements of
	biotechnology – P K Gupta.
8	An introduction to plant tissue culture – M K Razdan.
9	Plant propagation by tissue culture: The technology (Vols. 1 & 2) – Edwin George.
10	Handbook of plant cell culture (Vols. 1 to 4) – Evans et. al., Macmillan. ³ / ₄ Plant tissue and cell
	culture – H E Street, Blackwell Scientific.
11	Cell culture and somatic cell genetics of plants (Vols. 1 to 3) – A K Vasil, A. Press.
12	Plant cell culture technology – M M Yeoman.
13	Plant tissue culture and its biotechnological applications – W Bary, et. al., Springer Verlag.
14	Principles of plant biotechnology: An introduction to genetic engineering in plants – S H
	Mantel, et. al.
15	Advances in biochemical engineering / Biotechnology – Anderson, et. al.
16	Applied and fundamental aspects of plant cell tissue and organ culture edited by Reinert&
	Bajaj Y P S, Springer Verlag.
17	Plant cell and tissue culture – S Narayanswamy, Tata Mc Graw Hill Co.
18	Introduction of plant biotechnology – H.S. Chawla. Third Edition; Oxford and IBH publishing
	Co. Pvt. Ltd, New Delhi.

Supplementary learning Material:

Page **17** of **96**

1	https://nptel.ac.in/
2	https://swayam.gov.in/
3	https://diksha.gov.in/
4	https://epathshala.nic.in/
Peda	agogy:
Diro	at Classroom tooshing

0.0%		
Direct Class	sroom teaching	
Audiovisua	1	
Assignment	ts/Quiz	
Feedback		
Interactive	participating methods	
Seminar pr	esentation	

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %				larks i	n %	R : Remembering; U : Understanding; A : Applying;				
R	U	Α	Ν	Ε	С	N: Analyzing; E: Evaluating; C: Creating				
25	25	15	15	15	05					

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student will be able to explain	25
	Tools and techniques of plant genetic engineering	
CO-2	Molecular biology of nitrogen fixation, nif gene transfer, herbicide	25
	resistant plants production	
CO-3	Transgenic plants for agriculture and commercial applications	25
CO-4	Plant tissue culture techniques	25

Curriculum Revision:	
Version:	2 nd
Drafted on (Month-Year):	June 2022
Last Reviewed on (Month-Year):	September 2022
Next Review on (Month-Year):	April 2023

Page **18** of **96**

Effective from Academic Batch: 2022-23

Programme:	M. Sc. Biotechnology (Industrial Biotechnology)
Semester:	1
Course Code:	301420122
Course Title:	Microbial Technology
Course Group:	ELECTIVE

Course Objectives: At the end of this course, the student will have understanding of

- 1. Exploitating microorganisms for industrial product production (primary metabolites)
- 2. Industrial production of secondary metabolites using microorganisms (e.g. antibiotics)
- 3. Steroidbiotransformation and ergot alkaloids production, biofuels.
- 4. Food and dairy products production e.g. Cheese, yoghurt, Beer, Wine.

Teaching & Examination Scheme:

Contact	t hours pe	er week	Course	Examination Marks (Maximum / Pas				sing)	
Locturo	Tutorial	Dractical	Dragtical	Credits	The	eory	J/V	/P*	Total
Lecture	Tutoriai	Flatutal		Internal	External	Internal	External	TULAI	
3	1		4	50/20	50/20			100/40	

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	Scope of Microbial biotechnology.	15
	Microbial production and applications of primary metabolites: Citric acid, Ethanol,	
	L-Glutamic acid, Vitamin B ₁₂	
	Industrially important microbial enzymes: Types, mode of action and industrial	
	applications of microbial amylases and proteases	
2	Microbial production of therapeutically important products:-	15
	Antibiotics: Penicillin, Streptomycin	
	Ergot alkaloids: Production by Saprophytic cultivation	
	Biotransformations of steroids: Hydroxylation and dehydrogenation,	
	Steroid biotransformations.	

Page **19** of **96**

3	Production of single cell protein from bacteria, fungi and algae, Characteristics, nutritional value and safety, substrates used, process examples, applications. Cultivation of edible and medicinal mushrooms: Nutritional and medicinal properties Production and applications of microbial exopolysaccharides: Classification, Biological functions, structure and biosynthesis of Xanthan and Alginate, Factors affectingfermentative production of exopolysaccharides and downstream processing(recovery). Production of bioplastics (Polyhydroxyalkonates)	15
4	Microbiology and technology of fermented dairy products: Cheese making: Cheese varieties, manufacture of cheddar cheese, Sources andproperties of rennets. Yoghurt making Beer and Wine production	15

Biotechnology - Rehm and Reid.
Comprehensive biotechnology - Murray Moo Young.
Microbial Technology Vol I & II - Henry J. Peppler & D. Perlman
Microbiology & technology of fermented foods - Robert W. Hutkins. Blackwell publishing.
Modern Industrial Microbiology and Biotechnology 2nd edition - Nduka Okafor, Benedict C.
Okeke - (2017, CRC Press).
Comprehensive biotechnology. Murray MooYoung, Editor in Chief. Pergamon Press, Oxford,
1985, 4 volume set. Volume 3 — The Practice of Biotechnology: Bulk Commodity Products.
Volume Editors - Harvey W. Blanch, Stephen Drew and Daniel I.C. Wang, ISBN 10:
008026204X ISBN 13: 9780080262048
Microbial Technology - Second Edition, Volume I - Microbial Processes, Edited by Henry, J.
Peppler and D. Perlman, ACADEMIC PRESS, New York San Francisco London 1979. ISBN 0-
12-551501-4.
Microbial Technology - Second Edition, Volume II - Fermentation Technology, Edited by
ISPN 0.12 EE1E02.2 (yr. 2) Hardcover ISPN, 070012EE1E022, aPools ISPN, 0701402260270
ISBN 0-12-551502-2 (V. 2) Halucovel ISBN, 9760125515025, ebook ISBN, 9761465206279, Paparhack ISBN: 0781483244603
Riotechnology: a multi volume comprehensive treatise edited by H. I. Rehm and G. Reed in
cooperation with A. Publer and P. Stadler. – Second edition, completely revised edition. –
VCH. (Weinheim) volume 6: Products of Primary metabolism and volume 7: Products of
secondary metabolism ISBN 3-527-28310-2.
Microbiology and Technology of Fermented Foods, Second Edition. editor- Robert W.
Hutkins, Wiley-Blackwell Publishing, ISBN: 978-1-119-02744-7.
Modern Industrial Microbiology and Biotechnology, Second edition, editors - Nduka Okafor,
Benedict C. Okeke (2017), CRC Press, ISBN 97803677816.

Page **20** of **96**

Sup	Supplementary learning Material:				
1	https://nptel.ac.in/				
2	https://swayam.gov.in/				
3	https://diksha.gov.in/				
4	https://epathshala.nic.in/				

Pedagogy:

Direct Classroom teaching
Audiovisual
Assignments/Quiz
Feedback
Interactive participating methods
Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R : Remembering; U : Understanding; A : Applying;
R	U	Α	Ν	Е	С	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student will be able to explain	25
	Exploitation of microorganisms for industrial product production	
	(primary metabolites)	
CO-2	Industrial production of secondary metabolites using microorganisms	25
	(e.g. antibiotics)	
CO-3	Steroid biotransformation and ergot alkaloids production, biofuels.	25
CO-4	Food and dairy products production e.g. Cheese, yoghurt, Beer, Wine.	25

Curriculum Revision:					
Version:	2 nd				
Drafted on (Month-Year):	June 2022				
Last Reviewed on (Month-Year):	September 2022				
Next Review on (Month-Year):	April 2023				

Page **21** of **96**

Effective from Academic Batch: 2022-23

Programme: M. Sc. Biotechnology (Industrial Biotechnology)

Semester: 1

- Course Code: 301420123
- Course Title: Environmental Chemistry
- Course Group: ELECTIVE

Course Objectives: At the end of this course, the student should be able to:

- 1 Structure and composition of atmosphere, greenhouse effect
- 2 Water cycle, its pollutants, types of reactions in various water bodies
- 3 Organic and inorganic components of soil
- 4 Biochemical cycling of elements

Teaching & Examination Scheme:

Contact hours per week			Course	Exam	Examination Marks (Maximum / Pass			sing)
Lastruma	Tutorial	Dra ati agl	Credits	Theory		J/V/P*		Total
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total
3	1		4	50/20	50/20			100/40

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours							
1	Atmospheric Chemistry and Air Pollution: Chemical processes for formation of								
	inorganic and organic particulate matter, thermochemical and photochemical								
	reactions in the atmosphere.Gaseous pollutants, sources, reactions, control and								
	effects of air pollutants on living and non-living things. Effects of meteorological								
	and topographical factors. Global Climate change: Ozone depletion, Acid Rain and								
	Greenhouse effect. Formation and effects of Photochemical smog.								
2	Water Chemistry and Water Pollution: Chemistry of Natural Waters, Water	15							
	resources, hydrological cycle, physical and chemical properties of water,								
	complexion in natural and waste water, role of microorganisms, Water pollutants,								
	Types, Sources, Heavy metals, Metalloids Organic, Inorganic, Biological and								
	Radioactive. Types of reactions in various water bodies including marine								
	environment, Eutrophication and ecological magnification due to water pollution.								

3	Biogeochemical cycling of elements:Gaia Hypothesis, The Carbon cycle-Carbon 15								
	transfer through food webs-Carbon cycling within Habitats-Carbon Monoxide								
	cycling. The Hydrogen Cycle, The oxygen Cycle. The Nitrogen Cycle-								
	Ammonification, nitrification and denitrification. The Sulfur Cycle-Oxidative and								
	reductive sulfur transformation. The phosphorus Cycle, Iron cycle, Manganese								
	Cycle and Calcium Cycle.								
4	Soil chemistry & soil composition: Soil profile: Organic & Inorganic components of	15							
	soil, Physical and Chemical Properties, cation exchange capacity, soil pH,								
	environmental properties of soils. Leaching and erosion. Reactions with acids and								
	bases. Geochemical reactions that neutralize acidity. Biological Process that								
	neutralize acidity, Pesticide and Polymer Pollution. Physiochemical control of soil								
	pollution.								

1	Environmental Chemistry, a global perspective. Gary W. Valoon& Stephen J. Duffy, Oxford							
	University Press.							
2	Environmental chemistry, B. K. Sharma.							
3	Mahajan, S.P., Pollution Control in Process Industries, Tata McGraw-Hill, 1985.							
4	M. Arora, Environmental management of toxic and hazardous waste.							
5	Tyagi, O. D. and M. Mehra, Text book of Environmental Chemistry.							
6	A.K. de. Environmental Chemistry 2000 (4th edition). New age International (P) Ltd., New							
	Delhi, India.							
7	Kenneth Wark , Cecil F. Warner, Wayne T. Davis, Air pollution origin and its control work,							
	3rd Edition, Prentice Hall.							
8	R. M. Atlas. (1993) Microbial Ecology Fundamentals and Applications. 4th edition Pearson							
	education Pte. Ltd. ISBN: 81-297-0771-3.							
9	Stanley E. Manohar, Environmental Chemistry, Williard Grant press, Beston, Massachutes							

Sup	Supplementary learning Material:				
1	https://nptel.ac.in/				
2	https://swayam.gov.in/				
3	https://diksha.gov.in/				
4	https://epathshala.nic.in/				

Pedagogy: Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Page 23 of 96

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R : Remembering; U : Understanding; A : Applying;
R	U	Α	Ν	E C		N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student will be able to:	25
	Structure and composition of atmosphere, greenhouse effect	
CO-2	Water cycle, its pollutants, types of reactions in various water bodies	25
CO-3	Organic and inorganic components of soil	25
CO-4	Biochemical cycling of elements	25

Curriculum Revision:					
Version:	2 nd				
Drafted on (Month-Year):	June 2022				
Last Reviewed on (Month-Year):	September 2022				
Next Review on (Month-Year):	April 2023				

Page **24** of **96**

Effective from Academic Batch: 2022-23

Programme: M. Sc. Biotechnology (Industrial Biotechnology)

Semester: 1

Course Code: 301420124

Course Title: Clinical Biochemistry

Course Group: ELECTIVE

Course Objectives: At the end of this course, the student should be able to:

- 1 Specimen collection, preservation and transportation, composition of various body fluids
- 2 Acid base balance and disorders, types and functions of carbohydrates
- 3 Clinical enzymology, haemoglobin
- 4 General organ function tests

Teaching & Examination Scheme:

Contact hours per week		Course	urse Examination Marks (Maximum / Pa			sing)		
Terterial		Drastical	Credits	Theory		J/V/P*		Total
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total
3	1		4	50/20	50/20			100/40

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours				
1	Introduction to clinical biochemistry: Specimen collection, preservation and					
	transportation (blood, urine, spinal fluid, saliva, synovial fluid, amniotic fluid).					
	Chemistry, composition & functions of lymph, CSF, ascitic fluid, pleural fluid &					
	synovial fluid.					
2	pH and Acid base balance & disorders, Electrolytes balance & imbalance, Blood	15				
	gases and blood buffers.					
	Types, function and importance of carbohydrates, proteins and lipid, Lipoproteins,					
	Apolipoproteins, Lipoprotein metabolism and disorders.					

Page **25** of **96**

3	Clinical Enzymology: Principle of diagnostic enzymology, Liver, cardiac and skeletal	15
	enzyme, Digestive enzyme, Miscellaneous enzyme.	
	Hemoglobin (Biochemistry, synthesis and breakdown), Hemoglobinopathies,	
	Thalessemia, Bilirubin metabolism, Jaundice, Vandenbergh test.	
4	General Organ function tests: Liver function tests, , Thyroid function tests,	15
	Pancreatic function tests, Cardiac Function Test.	
	Biochemistry of Diabetes mellitus, Atherosclerosis, Fatty liver, and obesity.	

1	Tietz Textbook of Clinical Chemistry, Carl A. Burtis, Edward R. Ashwood, Harcourt Brace &
	Company AisaPvt. Ltd. ISBN-13: 978-0721656106
2	Commercial Biosensors: Graham Ramsay, John Wiley & Son, INC. (1998). ISBN-13: 978-0-
	471-58505-3
3	Essentials of Diagnostic Microbiology, Lisa Anne Shimeld.
4	Diagnostic Microbiology, Balley& Scott's. Eleventh Edition. ISBN 0-323-01678-2
5	Tietz Textbook of Clinical Chemistry and Molecular Diagnostics, 4th Edition By Carl A. Burtis,
	Edward R. Ashwood, and David E. Bruns, - ISBN -9780721601892
6	The Science of Laboratory Diagnosis, Crocker Burnett. ISBN 1899066624
7	Text books of Medical Laboratory Technology – Dr. Praful B. Godkar
8	Henry's Clinical Diagnosis and Management by Laboratory Methods 2 Richard McPherson
	Matthew Pincus ISBN: 978-1-4160-0287-
9	Biochemistry for medical students: Vasudeven andShreekumar Jay pee prakashan.
10	Practical Clinical biochemistry by Harold verly
11	Text book of medical biochemistry by- Chatterjea and Rana Shinde

Sup	plementary learning Material:
1	https://nptel.ac.in/
2	https://swayam.gov.in/
3	https://diksha.gov.in/

4 https://epathshala.nic.in/

Pedagogy:

Direct Classroom teaching
Audiovisual
Assignments/Quiz
Feedback
Interactive participating methods
Seminar presentation

Page **26** of **96**

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %			/larks i	n %	R : Remembering; U : Understanding; A : Applying;	
R	R U A N E C		С	N: Analyzing; E: Evaluating; C: Creating		
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student will be able to:	25
	Specimen collection, preservation and transportation, composition of	
	various body fluids	
CO-2	Acid base balance and disorders, types and functions of carbohydrates	25
CO-3	Clinical enzymology, haemoglobin	25
CO-4	General organ function tests	25

Curriculum Revision:					
Version:	2 nd				
Drafted on (Month-Year):	June 2022				
Last Reviewed on (Month-Year):	September 2022				
Next Review on (Month-Year):	April 2023				

Page **27** of **96**

	Faculty Name:	Science		
	Programme Name:	M. Sc. Biotechnology (Industrial Biotechnology)		
Argie Charles Willy Mandel (Sett 1945)	Semester:	2	Academic Batch:	2022-23

Course Group	Board of Studies / Faculty Ownership	Course Code	Course Name	Cr	Τe	eachin	ıg Sch	eme	Assessment/ Evaluation Type		External Exam Duration (Hrs.)		INT(T) Max./	EXT(T) Max./	INT(P) Max./	EXT(P) Max./	Grand Total Max./
					Т	Р	Tu	Cont. Hrs	Т	Р	Т	Р	Passing	Passing	Passing	Passing	Passing
Core	Biological Science		Industrial Waste Management	4	3		1	4	Т		2		50/20	50/20			100/40
Core	Biological Science		Bioprocess Engineering and Technology	4	3		1	4	Т		2		50/20	50/20			100/40
Core	Biological Science		0'-mics	4	4 3 1			4	Т		2		50/20	50/20			100/40
Core	Biological Science		Lab – I (Industrial Waste Management and Bioprocess Engineering and Technology)	and y) 4		8		8		Р		3			50/20	50/20	100/40
Core	Biological Science		Lab – II (O'-mics and Elective Course)	4		8		8		Р		3			50/20	50/20	100/40
	Biological Science		Animal Biotechnology	4	3		1	4	Т		2		50/20	50/20			100/40
Elective	Biological Science		Bioseparation Technology	4	3		1	4	Т		2		50/20	50/20			100/40
(Any One)	Biological Science		Protein Engineering	4	3		1	4	Т		2		50/20	50/20			100/40
	Biological Science		Environment Policy and Legislation	4	3		1	4	Т		2		50/20	50/20			100/40
Viva-Voce	Biological Science		Comprehensive Viva	1												50/20	50/20
			Total	25													

T = Theory, P = Practical, Tu = Tutorial

Name & Sign [Chairman - Board of Studies]: Name & Sign [Dean / Director]:

Effective from Academic Batch: 2022-23

Programme:	M.Sc. Biotechnology (Industrial Biotechno	logv)
i i ogi amme.	Mise. Dioteennoiogy (industrial Dioteenno	iugyj

Semester:	2
Semester:	2

- Course Code: To be given by the University
- Course Title: Industrial Waste Management
- Course Group: CORE

Course Objectives: At the end of this course, the student should be able to understand

- 1. Waste water management
- 2. Aerobic and anaerobic biological treatment process
- 3. Paper pulp, dairy and textile industry

Teaching & Examination Scheme:

Conta	ct hours pe	er week	Course	Exam	Examination Marks (Maximum / Passir					
Locturo	Tutorial	Dractical	Credits	The	eory	J/V	Total			
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total		
3	1		4	50/20	50/20			100/40		

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours						
1	Wastewater management: Types and sources of water pollutants, Methods for							
	measurement of water pollutants: BOD, COD, coliforms, biotechnological methods							
	used for monitoring of pollutants. Wastewater treatment methods: Primary:							
	Screening, grit removal, floatation tank, coagulation, flocculation, sedimentation.							
	Secondary treatment methods: Biological treatment methods examples of attached							
	and suspended techniques. Tertiary treatment methods: Nutrients removal,							
	advanced oxidation processes and sludge treatment methods.							

Page **28** of **96**

Aerobic Biological Treatment Processes: Process fundamentals Methods of	15						
Activity design and the stress of the stress	15						
aeration, design considerations, Operational difficulties. Description, design and							
operation of aerobic treatment systems: Activated Sludge process, Trickling Filters,							
Waste stabilization ponds. Anaerobic Biological Treatment Processes:							
Description, design and operation of attached and suspended growth processes:							
Anaerobic digestion, up flow anaerobic sludge blanket reactors (UASB), Septic tank.							
Solid Waste Management: Composting.							
Biomedical waste management: Introduction, Types of biomedical waste,	15						
sources of biomedical wastes, Hazardous biomedical wastes. Waste segregation							
and labeling, Handling, Collection, Storage and transportation.							
Hazardous Waste management: Definition, sources, characteristics and							
categories of hazardous wastes. Toxicology and Dick Assessment Environmental							
Eate of Hozordova Materiala Hozordova waste collection and transmitteria							
rate of nazaruous materials. nazaruous waste conection and transportation.							
Hazardous waste treatment technologies: Physical, chemical.							
Dairy: General Characteristics of Dairy Wastewaters and Treatment of Dairy	15						
Effluent Wastewater. Paper Pulp: Problems Related with Pulp and Paper Industry.							
Textile industry: Characterization of textile industrial wastewater, Treatment							
Technologies of textile industrial effluents.							
Tanning Industry: Characterization of Effluents, Environmental Impact of Tannery							
Effluents.							
Pharmaceutical Industry: Characterization of effluents, treatment technologies for							
pharmaceutical effluents.							
	 Aerobic Biological Treatment Processes: Process fundamentals Methods of aeration, design considerations, Operational difficulties. Description, design and operation of aerobic treatment systems: Activated Sludge process, Trickling Filters, Waste stabilization ponds. Anaerobic Biological Treatment Processes: Description, design and operation of attached and suspended growth processes: Anaerobic digestion, up flow anaerobic sludge blanket reactors (UASB), Septic tank. Solid Waste Management: Composting. Biomedical waste management: Introduction, Types of biomedical waste, sources of biomedical wastes, Hazardous biomedical wastes. Waste segregation and labeling, Handling, Collection, Storage and transportation. Hazardous Waste management: Definition, sources, characteristics and categories of hazardous wastes. Toxicology and Risk Assessment, Environmental Fate of Hazardous Materials. Hazardous waste collection and transportation. Hazardous waste treatment technologies: Physical, chemical. Dairy: General Characteristics of Dairy Wastewaters and Treatment of Dairy Effluent Wastewater. Paper Pulp: Problems Related with Pulp and Paper Industry. Textile industry: Characterization of textile industrial wastewater, Treatment Technologies of textile industrial effluents. Tanning Industry: Characterization of Effluents, Environmental Impact of Tannery Effluents. Pharmaceutical Industry: Characterization of effluents, treatment technologies for pharmaceutical effluents. 						

1	Clesceri LS. Greenberg AE, Eaton AD. (2004) Standard methods for examination of water
	&wastewater. American Public Health Association.
2	Gabriel Bitton. Wastewater Microbiology. 3 rd edition, A John Wiley & Sons, INC., Publication.
	ISBN: 0-471-65071-4.
3	Metcalf and Eddy Inc. (1979) Wastewater Engineering treatment, Disposal, Reuse. Tata
	McGraw Hill Publication. Co. Ltd.
4	Soli J. Arceivala. Wastewater treatment for pollution control. 2 nd edition, Tata-McGrawHill
	Publishing Company Limited. ISBN: 0-07-463002-4. 11. M. N. Rao and A. K. Datta.
	Wastewater Treatment. ISBN: 8120402154.
5	Hazardous wastes: Sources Pathways Receptors by Richard J. Watts ISBN: 9780471002383.
6	Criteria for hazardous waste landfills – CPCB guidelines 2000.
7	Anantpreet Singh and Sukhjit Kaur. (2012). Biomedical Waste Disposal. Jaypee Brothers
	Medical Publishers. ISBN: 978-93-5025-554-4.
8	Indu Shekhar Thakur. Environmental Biotechnology Basic concepts and applications. IK
	International Pvt, Ltd. ISBN 81-88237-52-3.
9	M. N. Rao and A. K. Datta. Wastewater Treatment. ISBN: 8120402154.

Page **29** of **96**

Sup	Supplementary learning Material:						
1	https://nptel.ac.in/						
2	https://swayam.gov.in/						
3	https://diksha.gov.in/						
4	https://epathshala.nic.in/						

Pedagogy:

Direct Classroom teaching	
Audiovisual	
Assignments/Quiz	
Feedback	
Interactive participating method	S
Seminar presentation	

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %				larks i	n %	R : Remembering; U : Understanding; A : Applying;
R	U	Α	Ν	Ε	С	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student will have proper	25
	understanding of:	
	Waste water management	
CO-2	Aerobic and anaerobic biological treatment process	25
CO-3	Biochemical and Hazardous Waste management	25
CO-4	Paper pulp, dairy and textile industry	25

Curriculum Revision:						
Version:	2 nd					
Drafted on (Month-Year):	June 2022					
Last Reviewed on (Month-Year):	September 2022					
Next Review on (Month-Year):	April 2023					

Page **30** of **96**

Effective from Academic Batch: 2022-23

Programme:	M. Sc. Biotechnology (Industrial Biotechnology)
Semester:	2
Course Code:	To be given by the University
Course Title:	Bioprocess Engineering & Technology
Course Group:	CORE

Course Objectives: At the end of this course, the student should be able to:

- 1 Design a fermenter and media for industrial fermentations
- 2 Sterilization of media and air, microbial growth kinetics
- 3 Components of Aeration and agitation, scale up and scale down, Control systems
- 4 Downstream processing

Teaching & Examination Scheme:

Contact hours per week			Course	e Examination Marks (Maximum / Pas				sing)
Lecture	Tutorial	Practical	Credits	Theory		J/V/P*		Total
				Internal	External	Internal	External	Total
3	1		4	50/20	50/20			100/40

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	Introduction to Bioprocess technology- History of fermentation, Range of	15
	fermentation processes, Chronological development of fermentation industry,	
	Introduction of types of fermentation processes.	
	Isolation, primary and secondary screening, preservation, maintenance and	
	improvement of Industrially important organisms.	
2	Media for industrial fermentation: Components of medium, Addition of precursor	15
	and Metabolic regulators to media, Media optimization by conventional and	
	statistical methods (Plackett-Burman design, Response surface method)	
	Sterilization of media and air: Kinetics of medium sterilization, Design of batch	
	sterilization process, Scale up of batch sterilization process, Design of continuous	
	sterilization process, Sterilization of air by filtration, Theory and design of depth	
	filters	

Page **31** of **96**

-		
3	Bioreactor design: Laboratory, pilot and large-scale reactors. Mechanical,	15
	pneumatic and Hydrodynamic systems. Plug flow reactors, immobilization and	
	immobilized enzyme reactors.	
	Scale up and Scale down and Aseptic operations &containment. Components of	
	Agitation and aeration. Inoculum development.	
4	Bioprocess kinetics: Kinetics of growth and substrate utilization in batch, fed batch	15
	and Continuous fermentation systems.	
	Control of process parameters: Instrumentation for monitoring bioreactor and	
	fermentation processes, Sensors, Controllers, fermentation control systems and	
	architecture, Incubationand sequence control, advanced control.	

1	Principles of Fermentation Technology, 3 rd edition by Peter F Stanbury, Allan Whitaker,
	Stephen J Hall. Butterworth-Heinemann is an imprint of Elsevier (2016) ISBN: 978-0-08-
	099953-1
2	Comprehensive biotechnology. Murray MooYoung, Editor in Chief. Pergamon Press, Oxford,
	1985, 4 volume set. Volume Editors - Harvey W. Blanch, Stephen Drew and Daniel I.C. Wang,
	ISBN 10: 008026204X ISBN 13: 9780080262048.
3	Methods in Industrial Microbiology by Bohumil Sikyta. Ellis Horwood Publisher (1983).
	ISBN 10:0853122032, 13:9780853122036.
4	Fermentation Microbiology and Biotechnology 2 nd Edition by E.M.T. El-Mansi, C.F.A. Bryce,
	Arnold L. Demain, A.R. Allman. CRC Press (2006) ISBN 13:978-0-8493-5334-5.
5	Modern Industrial Microbiology and Biotechnology 2 nd edition by Nduka Okafor, Benedict
	C. Okeke. CRC Press (2017) ISBN 13:978-1-1385-5018-6.
6	Industrial Microbiology: An Introduction – Mickael J. Waites, Neil L. Morgan, John S. Rockey
	& Gary Higton. Blackwell Science Ltd. ISBN 0-632-05307-0.
7	Upstream Industrial Biotechnology Volume 1_ Expression Systems & amp; Process
	Development & amp; Volume 2_ Equipment, Process Design, Sensing, Control, and cGMP
	Operations by Michael C. Flickinger. John Wiley & amp; Sons, Inc., Hoboken, New Jersey
	ISBN 978-1-118-13123-7

Sup	Supplementary learning Material:				
1	https://nptel.ac.in/				
2	https://swayam.gov.in/				
3	https://diksha.gov.in/				
4	https://epathshala.nic.in/				

Pedagogy: Direct Classroom teaching Audiovisual Assignments/Quiz Feedback

Page **32** of **96**

Interactive participating methods Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %			larks i	n %	R : Remembering; U : Understanding; A : Applying;	
R	U	Α	Ν	Ε	C	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student should have knowledge about	25
	Design of fermenter, media for industrial fermentations	
CO-2	Sterilization of media and air, microbial growth kinetics	25
CO-3	Components of Aeration and agitation, scale up and scale down, Control	25
	systems	
CO-4	Downstream processing	25

Curriculum Revision:				
Version:	2 nd			
Drafted on (Month-Year):	June 2022			
Last Reviewed on (Month-Year):	September 2022			
Next Review on (Month-Year):	April 2023			

Page **33** of **96**

Effective from Academic Batch: 2022-23

Programme:	M. Sc. Biotechnology (Industrial Biotechnology)
Semester:	2
Course Code:	To be given by the University
Course Title:	O'-mics

Course Group: CORE

Course Objectives: At the end of this course, the student should be able to tell about

- 1 Genome and proteome, DNA microarray
- 2 Human genome project, Large scale sequencing methods, some model organisms and their genome projects
- 3 Protein structure and function, Methods to study protein-protein interactions
- 4 Concept development about transcriptomics and metabolomics

Teaching & Examination Scheme:

Contact hours per week			Course	Exam	sing)			
Lecture	Tutorial	Practical	Credits	Theory		J/V/P*		Total
				Internal	External	Internal	External	Total
3	1		4	50/20	50/20			100/40

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours					
1	Introduction to the proteome and the genome, codon bias, gene expression,	15					
	Genome size-C value paradox, DNA sequencing: Maxam-Gilbert, Sanger,						
	Pyrosequencing, automated DNA sequencing. Other features of nucleic acid						
	sequencing. Analysis and Annotation-ORF, Exon-intron boundaries						
2	Human genome project- Strategies for large-scale sequencing projects; landmarks	15					
	on chromosomes generated by various mapping methods; BAC libraries and						
	shotgun libraries preparation; Physical map-cytogenetic map, contig map,						
	restriction map.						
	Model organisms and other genome projects (Arabidopsis, Caenorhabditiselegans);						
	Comparative genomics of relevant organisms such as pathogens and non-						
	pathogens						

Page **34** of **96**

3	Relationship between protein structure and function, Identification and analysis of	15
	proteins by 2D analysis; Spot visualization and picking; Tryptic digestion of protein	
	and peptide fingerprinting; Mass spectrometry: ion source (MALDI, spray sources);	
	analyzer (ToF, quadrupole, quadrupole ion trap) and detector. Protein interaction	
	maps. Protein arrays-definition, applications- diagnostics, expression profiling.	
4	DNA Microarray technology: The generation of cDNA expression libraries, their	15
	robotic arraying, Complex hybridization on DNA chips. Transcriptomics:	
	Comparative transcriptomics, Differential gene expression; Genotyping/SNP	
	detection; Detection technology; Computational analysis of microarray data.	

1	Discovering Genomics, Proteomics and Bioinfo, A,M, Campbell, C,S,H, Press, (2003). ISBN
2	Essential of Genomics and Bioinformatics C,W, Sensen, Wiley (2003), ISBN (Print), 3
3	Hand book of Comparative Genomics: Principle and Methodology by Cecilia Saccone,
	Graziano Pesole, Wiley
4	Proteomics : From protein sequencing to function by S.R. Pennington and M.J. Dunn, Viva
	Books, Private Ltd (2001) ISBN
5	Introduction to Proteomics by Daniel C, Liebler, Humana Press ISBN
6	Discovering Genomics, Proteomics and Bioinfo, A,M, Campbell, C,S,H, Press, (2003). ISBN
7	Principles of Gene Manipulation and Genomics by Primrose
8	Genetics & Genomics By Csaba Szalai
9	Proteomics : From protein sequencing to function by S.R. Pennington and M.J. Dunn
10	Introduction to genomics by Arthur M Lesk

Juppi	Supplementary learning Material:			
1 h	https://nptel.ac.in/			
2 h	https://swayam.gov.in/			
3 h	https://diksha.gov.in/			
4 h	https://epathshala.nic.in/			

Pedagogy:

Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Page **35** of **96**

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %		n %	R : Remembering; U : Understanding; A : Applying;			
R	U	Α	Ν	Ε	C	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student will clear understanding of	25
	Genome and proteome, DNA microarray	
CO-2	Human genome project, Large scale sequencing methods, some model organisms and their genome projects	25
CO-3	Protein structure and function, Methods to study protein-protein interactions	25
CO-4	Concept development about transcriptomics and metabolomics	25

Curriculum Revision:				
Version:	2 nd			
Drafted on (Month-Year):	June 2022			
Last Reviewed on (Month-Year):	September 2022			
Next Review on (Month-Year):	April 2023			

Page **36** of **96**

Effective from Academic Batch: 2022-23

Programme:	M. Sc. Biotechnology (Industrial Biotechnology)
Semester:	2
Course Code:	To be given by the University
Course Title:	Lab – I (Industrial Waste Management and Bioprocess Engineering & Technology)
Course Group:	CORE

Course Objectives: At the end of this course, the student should be able to understand

- 1. Waste water management
- 2. Aerobic and anaerobic biological treatment process
- 3. Paper pulp, dairy and textile industry

Teaching & Examination Scheme:

Contact hours per week			Course	ourse Examination Marks (Maximum / Pa				sing)
Lasture	Tutorial	Dractical	Credits	The	eory	J/V	/P*	Total
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total
		8	4			50/20	50/20	100/40

* J: Jury; V: Viva; P: Practical

List of Practicals / Tutorials: Industrial Waste Management

1	Determination of Dissolved oxygen
2	Determination of BOD of sewage
3	Determination of COD sewage
4	Estimation of Total Solids (TS)
5	Estimation of Total Suspended Solids (TSS)
6	Estimation of Total Dissolved Solids (TDS)
7	Estimation of MLSS/MLVSS
8	IMViC tests.
9	Routine Bacteriological analysis of water: a. Tests for coliforms: Presumptive test,
	Confirmatory test and Completed test.
10	Determination of MPN of coliform.
11	Field trip to a wastewater treatment plant.

List of Practicals / Tutorials: Bioprocess Engineering & Technology

1	Screening for amylase producing organisms
2	Screening for organic acid producing microorganisms
3	Isolation of antibiotic producing microorganisms by crowded plate technique

Page **37** of **96**

4	Isolation and culturing of yeasts
5	Separation of amino acids by chromatography
6	Estimation of glucose by DNS method
7	Estimation of ethanol by dichromate method
8	Immobilization of microbial cells by entrapment method

Refe	erence Books::
1	Experiments in microbiology, Plant Pathology and Biotechnology, K.R. Aneja New Age
	International Publishers, New Delhi, ISBN 978-81-224-1494-3.
2	Microbiological Techniques by N, Murugalatha, lali Growther, J. Vimalin Hena, N. Hema
	Shenpagam, R. Anitha, D. Kanchana Devi, G. Rajalakshmi, ISBN: 9788180941078.
3	Experimental Microbiology Vol. 1 and Vol. 2 by Rakesh Patel.
4	Microbiological Techniques, N Murugalatha, Lali Growther, J Vimalin Hena, N Hema
	Shenpagam, R Anitha , D Kanchana Devi, G Rajalakshmi - MJP PUBLISHERS (2019)
5	Baird, Rodger, and Laura. Bridgewater. 2017. Standard Methods for the Examination of
	Water and Wastewater. Washington, D.C.: American Public Health Association.
6	Maiti SK (2007) Handbook of methods in environmental studies. Water and wastewater
	analysis, vol I. ABD Publication, Jaipur.
7	CPCB (2008) Guidelines for water quality monitoring. PariveshBhawan: Central Pollution
	Control Board, New Delhi. MINARS/27/2007-08.
8	Experiments in microbiology, Plant Pathology and Biotechnology, K.R. Aneja New Age
	International Publishers, New Delhi, ISBN 978-81-224-1494-3
9	Microbiological Techniques by N, Murugalatha, laliGrowther, J. VimalinHena, N. Hema
	Shenpagam, R. Anitha, D. Kanchana Devi, G. Rajalakshmi, ISBN: 9788180941078
10	Experimental Microbiology Vol. 1 and Vol. 2 by Rakesh Patel
11	Research articles

Sup	Supplementary learning Material:		
1	https://nptel.ac.in/		
2	https://swayam.gov.in/		
3	https://diksha.gov.in/		
4	https://epathshala.nic.in/		

Pedagogy:

Hands on training
Discussion with students
Demonstration
Model
Chart

Page **38** of **96**

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %			larks i	n %	R : Remembering; U : Understanding; A : Applying;	
R	R U A N E C		С	N: Analyzing; E: Evaluating; C: Creating		
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Curriculum Revision:			
Version:	2 nd		
Drafted on (Month-Year):	June 2022		
Last Reviewed on (Month-Year):	September 2022		
Next Review on (Month-Year):	April 2023		

Page **39** of **96**

Effective from Academic Batch: 2022-23

Programme:	M. Sc. Biotechnology (Industrial Biotechnology)
Semester:	2
Course Code:	To be given by the University
Course Title:	Lab – II (O'-mics and Elective Course)
Course Group:	CORE

Course Objectives: At the end of this course, the student should be able to understand

- 1. Waste water management
- 2. Aerobic and anaerobic biological treatment process
- 3. Paper pulp, dairy and textile industry

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passing)				sing)
Locturo	Tutorial	Drea atti a a l	Credits	The	eory	J/V/P*		Total
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total
		8	4			50/20	50/20	100/40

* J: Jury; V: Viva; P: Practical

List of Practicals / Tutorials: O-mics (Core)

1	Introduction to genome sequence databases
2	Protein and DNA sequence databases
3	Designing a primer
4	Total Protein profile of plant system using PAGE.
5	Determination of molecular weight and quantitation of separated proteins.
6	Demonstration of 2D gel electrophoresis

List of Practicals / Tutorials: Animal Biotechnology (Elective)

1	Introduction of animal tissue culture laboratory with necessary equipment and accessories.
2	Preparation of culture media
3	Sterilization of culture media
4	Primary culture from Chick embryo.
5	Cell counting using hemocytometer.
6	Cell viability

Page 40 of 96

7	Organ culture – trachea culture
8	Short term lymphocyte culture.
9	Chromosome preparation from cultured cells.
10	Cytotoxicity test-MTT

List of Practicals / Tutorials: Bioseparation Technology (Elective)

1	Determination of dry weight and wet weight of cells
2	Determination of total protein of cells by alkali lysis
3	Recovery and estimation of penicillin
4	Ammonium Sulphate fractionation of protein
5	Dialysis of fractionated proteins
6	Recovery of protein by acetone precipitation
7	Demonstration of chromatography techniques

List of Practicals / Tutorials: Protein Engineering (Elective)

1	To perform protein extraction.
2	Determine an importance of various electrophoresis techniques in protein engineering.
3	A study an application of liquid chromatographic technique.
4	To understand the importance of gas chromatographic techniques with demonstration.
5	Understanding of principles and applications of MALDI-TOF and SELDI TOFF

Practicals / Tutorials: Environment Policy and Legislation (Elective)

1	Bio-ethanol production from waste materials.
2	Production of biodiesel from vegetable oil.
3	Production of biofuel from algae.
4	Physico-chemical analysis soil.
5	Isolation of Actinomyctes from soil.
6	Demonstration of Lab scale biogas production plant.
7	Saponification value of an oil sample

Reference Books:

1	"Bioinformatics For Beginners: A Laboratory Manual" by Department Of Computer Science					
	PSGR, Published by Blue Hill Publishers. (ISBN: 9788193708828)					
2	"Bioinformatics: A Practical Guide to theAnalysis of Genes and Proteins" by Andreas D.					
	Baxevanis;Published by A John Wiley & Sons, Inc., Publication(ISBN: 0471383902)					
3	"Essential Bioinformatics" by Jin Xiong; Published by Cambridge University Press.(ISBN:978-					
	0521600828)					
4	"Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology"					
	by Michael C Flickinger; Published by A John Wiley & Sons, Inc., Publication. (ISBN:					
	9780471799306)					

Page **41** of **96**

5	"Bioseparations Downstream Processing for Biotechnology" by Paul A Belter and E L
	Cussler; Published by Wiley India Pvt Ltd. (ISBN: 9788126531974)
6	"Downstream Processing and Bioseparation: Recovery and Purification of Biological
	Products" by Jean-François Hamel and Subhas K Sikdar, Published by ACS publications.
	(ISBN: 9780841217386)

Sup	Supplementary learning Material:				
1	https://nptel.ac.in/				
2	https://swayam.gov.in/				
3	https://diksha.gov.in/				
4	https://epathshala.nic.in/				
Ped	agogy:				
Han	Hands on training				
Disc	ussion with students				

Suggested Specification	table with Marks	(Theory) (Revised	Bloom's Taxonomy):

Demonstration

Model Chart

<u></u>	licu op	contout	non cub	ie with	(Theory) (hevised Broom's Tukonomy).	
Distribution of Theory Marks in %						R : Remembering; U : Understanding; A : Applying;
R	U	Α	Ν	E C		N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Curriculum Revision:				
Version:	2 nd			
Drafted on (Month-Year):	June 2022			
Last Reviewed on (Month-Year):	September 2022			
Next Review on (Month-Year):	April 2023			

Page **42** of **96**

Effective from Academic Batch: 2022-23

- Programme: M. Sc. Biotechnology (Industrial Biotechnology)
- Semester:
- Course Code: To be given by the University
- Course Title: Animal Biotechnology

2

Course Group: ELECTIVE

Course Objectives: At the end of this course, the student Should be able to:

- 1 Understand the scope of Animal Biotechnology
- 2 Basic techniques in animal cell culture
- 3 Applications of animal tissue culture
- 4 Techniques for producing transgenic animals

Teaching & Examination Scheme:

Contact hours per week		Course	Examination Marks (Maximum / Passing)					
Locturo	re Tutorial	Dractical	Credits	The	eory	J/V	/P*	Total
Lecture		Practical		Internal	External	Internal	External	Total
3	1		4	50/20	50/20			100/40
		L	4	50/20	50/20			100/4

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours								
1	 Introduction and scope of Animal Biotechnology 									
	Basic requirements for animal tissue culture: Infrastructure, necessary									
	equipments and accessories for animal tissue culture lab.									
	• Culture Media: Different types of media-Natural media, Defined media, Serum									
	free media Chemical, physical and metabolic functions of different constituents									
	of culture media.									
	Role of serum in tissue culture media									
	Sterilization techniques									
	Biohazards and Bioethics									

Page **43** of **96**

2	Biology and characterization of cultured colls	15						
2		13						
	Basic techniques of animal cell culture: Primary culture techniques,							
	 Enzymatic and mechanical disaggregation techniques 							
	Sub culture methods							
	• Development of cell lines, nomenclature and types of cell lines.							
	• Explant culture, Organ culture – 3Dimensional culture							
	Large scale culture of cells-suspension and monolayer culture							
	Cell separation methods							
	Cell cloning							
	Transformation and immortalization							
3	Application of animal tissue culture	15						
	Contaminants- source, types and prevention							
	Cell viability Cytotoxicity assays							
	Cryopreservation of cultured cells							
	 Hybridoma technology – production of MAbs. 							
	Vaccine Production							
4	Transgenic Animal Technology:	15						
	Techniques for producing transgenic Animals,							
	Application of transgenic animals							
	Artificial animal breeding, Artificial insemination,							
	In vitro fertilization (IVF), Embryo Transfer, Embryo sexing							
	• Tissue Engineering- scaffold materials, synthesis of scaffold, cell sources and							
	applications of Tissue engineering							

1	Culture of animal cells: A manual of basic technique- R. Ian Freshney, Wiley Publication.
2	Animal cell culture &technology-M. Butler.
3	Animal cell culture techniques- M. Clynes, Springer.
4	Animal Biotechnology- M. M. Ranga. Agrobios (India).
5	Animal Biotechnology-Young, Murray, Moo. Pergamon Press, Oxford.
6	Methods in Cell Biology-Vol. 57, Animal cell culture methods- Mather, J.P., Academic Press.
7	Animal Cell Biotechnology-Spier, R.E. Academic press.
8	Animal biotechnology – P. Ramadass, MJP Publishers
9	Biotechnology- U.Styanarayan, Books and Allied (P) Ltd.

Sup	Supplementary learning Material:			
1	https://nptel.ac.in/			
2	https://swayam.gov.in/			
3	https://diksha.gov.in/			

Page **44** of **96**

4 https://epathshala.nic.in/

Pedagogy: Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Dist	tributio	on of T	heory M	larks i	n %	R : Remembering; U : Understanding; A : Applying;
R	U	J A N E C			C	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student will have clear understanding	25
	of	
	The scope of Animal Biotechnology	
CO-2	Basic techniques in animal cell culture	25
CO-3	Applications of animal tissue culture	25
CO-4	Techniques for producing transgenic animals	25

Curriculum Revision:						
Version:	2 nd					
Drafted on (Month-Year):	June 2022					
Last Reviewed on (Month-Year):	September 2022					
Next Review on (Month-Year):	April 2023					

Page **45** of **96**

Effective from Academic Batch: 2022-23

Programme: M. Sc. Biotechnology (Industrial Biotechnology)

Semester: 2

Course Code: To be given by the University

Course Title: Bioseparation Technology

Course Group: ELECTIVE

Course Objectives: At the end of this course, the student should be able to

- 1. Understand about various downstream processing
- 2. Product isolation and purification methods
- 3. Final Product Purification and Preparation

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Pass			sing)	
Lastures	Tutorial	Dura ati anl	Credits	The	eory	J/V	/P*	Total
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total
3	1		4	50/20	50/20			100/40

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	Introduction to downstream processing, Characteristics of fermentation broth and	15
	its pretreatment, Separation of cells and suspended solids: Filtration: theory of	
	filtration, use of filter aids, Batch filters, Continuous filters, cross flow filtration.	
	Membrane processes – Dialysis, ultrafiltration, Reverse osmosis and	
	electrodialysis	
2	Product isolation methods:	15
	Centrifugation: Cell aggregation and flocculation, Types of commercial centrifuges	
	Cell disruption by physical and chemical methods,	
	Liquid-liquid extraction-choice of solvent, co current and counter current	
	extraction,	
	Centrifugal extractor, Solvent recovery, Two-phase aqueous extraction system,	
	super criticalfluid extraction.	

Page **46** of **96**

3	Chromatography techniques for product isolation and purification:						
	Adsorption chromatography, Gel permeation chromatography, Ion-exchange						
	chromatography, hydrophobic chromatography, Affinity chromatography, High						
	performance chromatography (HPLC). FPLC, Expanded bed chromatography						
4	Final Product Purification and Preparation Crystallization; Drying and	15					
	lyophilisation; Formulation Strategies						
	Case studies: Recovery of Ethanol, Citric acid, Penicillin.						

1	Principles of Fermentation Technology – Peter F. Stanbury, Allan Whitaker and Stephen J.
	Hall.
2	Fermentation Microbiology and Biotechnology – E.M.T. El-Mansi and C.F.A. Bryee.
3	Comprehensive Biotechnology – Murray Moo Young
4	Biochemical Engineering Fundamentals – J.E.Bailey& D.F. Ollis.
5	Downstream industrial biotechnology : recovery and purification / edited by Michael C.
	Flickinger

Supplementary learning Material:	
---	--

1 https://nptel.ac.in/

2 https://swayam.gov.in/

3 https://diksha.gov.in/

4 https://epathshala.nic.in/

Pedagogy:

cuagogy.	
irect Classroom teaching	
udiovisual	
ssignments/Quiz	
eedback	
iteractive participating methods	
eminar presentation	

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %			larks i	n %	R : Remembering; U : Understanding; A : Applying;	
R	U	Α	Ν	Ε	C	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student will have clear understanding	25
	of Various downstream processing	
CO-2	Product isolation and purification methods	25
CO-3	Chromatographic techniques	25

Page **47** of **96**

CO-4 Final Product Purification and Preparation

25

Curriculum Revision:					
Version:	2 nd				
Drafted on (Month-Year):	June 2022				
Last Reviewed on (Month-Year):	September 2022				
Next Review on (Month-Year):	April 2023				

Page **48** of **96**

Effective from Academic Batch: 2022-23

Programme:	M. Sc. Biotechnology (Industrial Biotechnol	ogy)
0		000

- Semester:
- Course Code: To be given by the University
- Course Title: Protein Engineering

2

Course Group: ELECTIVE

Course Objectives: At the end of this course, the student should have clear understanding of :

- 1. Different tools and methods used in proteomic study.
- 2. The sources of protein, Industrial and medical application of proteins,
- 3. Different expression of proteins for large scale purifications,
- 4. Protein engineering strategy.

Teaching & Examination Scheme:

Contact hours per week			Course	Course Examination Marks (Maximum / Pa			mum / Pas	sing)
Lecture	Tutorial	Practical	Credits	The	eory	ory J/V		Total
				Internal	External	Internal	External	IUtal
3	1		4	50/20	50/20			100/40

* **J**: Jury; **V**: Viva; **P**: Practical

Detailed Syllabus:

Sr.	Contents	Hours					
1	Proteomics: Sample preparation, Gel-based proteomics - two-dimensional gel	15					
	electrophoresis (2-DGE), two-dimensional fluorescence difference in-gel						
	electrophoresis (DIGE), Staining methods, PF-2D, Tandem FPLC, Mass						
	spectroscopy: basic principle, ionization sources, mass analyzers, different types of						
	mass spectrometers (MALDI-TOF Q-TOF, LC-MS)						
2	Multidimensional proteomics: SELDI-TOF. Quantitative proteomics - stable isotope						
	labeling by amino acids in cell culture (SILAC), isotope-coded affinity tag (ICAT),						
	isobaric tagging for relative and absolute quantitation (iTRAQ); Label-free						
	proteomics., Nuclear magnetic resonance spectroscopy (NMR), basic principles,						
	chemical shift, spinspin interaction, NOE, 2D-NMR, NOESY, COSEY.						

Page **49** of **96**

3	X-ray Crystallography: Principle of X-ray diffraction, scattering vector, structure	15
	factor, phase problem, reciprocal lattice and Ewald sphere, Miller indices, Zone	
	axes, crystal lattice, Lane Equations, Bragg's law, special properties of protein	
	crystals, model building, refinement and R-factor.	
4	Protein Engineering: Protein sources, Industrial and medical application of	15
	proteins, different expression of proteins for large-scale purifications, protein	
	engineering strategy, rational and random mutagenesis. Applications of protein	
	engineering protein in Chemical and Medical Industries: Generation of heat stable,	
	pH stable enzymes, application in vaccine development, drug development, sensor	
	development. Practicals, Protein electrophoresis-1D+2D, HPLC, FPLC, MALDI-TOF	
	& LC-MS	

1	Principles of Protein X-Ray Crystallography [3rd ed.] by Jan Drenth
2	Protein engineering in industrial biotechnology by L Alberghina,Net Library, Inc.
3	Protein Engineering Protocols [1 ed.] by Kristian Müller,Katja Arndt
4	Protein Engineering by C Kohrer, U Rajbhandary
5	Protein Engineering Handbook Volume 3 [1 ed.] by Stefan Lutz, Uwe Theo Bornscheuer
6	Protein Engineering by P. Kaumaya
7	Protein Structure Prediction: Methods and Protocols by Webster, David (Southern Cross
	Molecular Ltd., Bath, UK)
8	Essential Bioinformatics by JinXiong

Sup	Supplementary learning Material:				
1	https://nptel.ac.in/				
2	https://swayam.gov.in/				
3	https://diksha.gov.in/				
4	https://epathshala.nic.in/				

Pedagogy:
Direct Classroom teaching
Audiovisual
Assignments/Quiz
Feedback
Interactive participating methods
Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %			larks i	n %	R : Remembering; U : Understanding; A : Applying;	
R	R U A N E C		C	N: Analyzing; E: Evaluating; C: Creating		
25	25	15	15	15	05	

Page **50** of **96**

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student will have clear understanding	25
	of	
	Different tools and methods used in proteomic study.	
CO-2	The sources of protein, Industrial and medical application of proteins,	25
CO-3	Different expression of proteins for large scale purifications,	25
CO-4	Protein engineering strategy	25

Curriculum Revision:				
Version:	2 nd			
Drafted on (Month-Year):	June 2022			
Last Reviewed on (Month-Year):	September 2022			
Next Review on (Month-Year):	April 2023			

Page **51** of **96**

Effective from Academic Batch: 2022-23

Programme:	M. Sc. Biotechnology (Industrial Biotechnolog	y)

Semester:	
-----------	--

Course Code: To be given by the University

2

Course Title: Environment Policy and Legislation

Course Group: ELECTIVE

Course Objectives: At the end of this course, the student should have knowledge about

- 1. Legal structure of India and fundamentals of environmental legislation and policy making.
- 2. Understand the environmental performance including compliance with environmental legislation.
- 3. Implementation of environmental policies and practices and raise awareness about the emerging environmental issues.
- 4. Study of various acts, laws and rules related to air, water, environment and wastes in India

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passing)				
Lecture	Tutorial	Practical	Credits	The	eory	J/V/P*		Total
				Internal	External	Internal	External	Total
3	1		4	50/20	50/20			100/40

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	International Law and Environmental Protection: Fundamental Principles of	15
	International Environmental Law. United Nations Conference on Human	
	Environment, 1972 (Stockholm Conference) – Aims and Objectives of the	
	Conference, Stockholm Declaration. UNEP- Vienna Convention & Montreal	
	Protocol, World Charter for Nature, 1982. WCED – The Brundtland Commission,	
	Brundtland Report 1987. United Nations Conference on Environment and	
	Development (UNCED/Earth Summit) - Aims and Objectives of Conference, Rio	
	Declaration 1992, Agenda 21, Convention on Biological Diversity. Earth Summit	
	Plus Five - Kyoto Protocol, 1997; Millennium Development Goals. Johannesburg	
	Conference 2002 (WSSD) - Johannesburg Declaration & Major Outcomes.	

2	History and Development of Environmental Law in India: Environmental	15
	Protection in Ancient Indian Tradition and Culture - Protection of Environment in	
	Ancient India and During Medieval Period. Protection of Environment during	
	British Period – Major Legislations. Protection of Environment during Post	
	Independence Period – Pitambar Pant Committee, Tiwari Committee, NCEP,	
	Department of Environment, MOEF Guidelines and Notifications, Appellate	
	Authority Act, Other related Notifications.	
3	Protection of Environment under the Indian Constitution: Introduction -	15
	Indirect Provisions, International Obligations, 42 nd Constitution Amendment Act,	
	1976. Directive Principles of State Policy - Fundamental Duties. Development of	
	Fundamental Right to Environment - Judicial Role, Expansion of Locus Standi, PIL,	
	Constitutional Remedy for Protection of Environment, Dynamic Interpretation of	
	Article 21, 14 & 19 of the Constitution. Right to Wholesome Environment – Right	
	to Clean and Pollution-free Environment, Right to Sweet Water. Incorporation of	
	International Principles under Indian Constitution – Sustainable Development -	
	Precautionary and Polluter Pays Principles, Absolute and Strict Liability.	
4	Protection of Water, Air and Environment in India:	15
	EP Act 1986, Air (Prevention and Control of pollution) Act, Water (Prevention and	
	Control of pollution) Act, Mines and Mineral Act, Factories Act, Pesticides Act,	
	Indian Forest Act, Wildlife Act, Ancient Monuments and Archaeological Sites and	
	Remains Act, Hazardous Waste Management and Handling Rules / Biomedical	
	Rules / Solid Waste Management Rules, Environment Tribunal Act, Climate change	
	Protocols and Conventions	

1	S.C. Shastri, <i>Environmental Law</i> , (3 rd Edition.), Eastern Book Company, Lucknow, 2008.
2	MaheshwaraSwamy, <i>Textbook on Environmental Law,</i> (2 nd Edition.), Asia Law House,
	Hyderabad, 2008.
3	Shyam Divan and Armin Rosencranz, Environmental Law and Policy in India, Oxford
	University Press, New Delhi, 2005.
4	Amod S. Tilak, <i>Environmental Law,</i> (1 st Edition.), Snow White Publication, Mumbai, 2009.
5	I.A. Khan, <i>Environmental Law,</i> (2 nd Edition.), Central Law Agency, Allahabad, 2002.
6	P Leelakrishnan, <i>Environmental Law in India,</i> (2 nd Edition.), Lexis Nexis, New Delhi, 2005.
7	S. Shantakumar, Introduction to Environmental Law, (2 nd Edition.), Wadhwa& Company,
	Nagpur, 2005.

Supplementary learning Material: 1 https://nptel.ac.in/ 2 https://swayam.gov.in/ 3 https://diksha.gov.in/ 4 https://epathshala.nic.in/

Page **53** of **96**

Pedagogy: Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R : Remembering; U : Understanding; A : Applying;
R	U	Α	Ν	Ε	С	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student should be clear about	25
	Legal structure of India and fundamentals of environmental legislation	
	and policy making.	
CO-2	Understand the environmental performance including compliance with	25
	environmental legislation	
CO-3	Implementation of environmental policies and practices and raise	25
	awareness about the emerging environmental issues	
CO-4	Study of various acts, laws and rules related to air, water, environment	25
	and wastes in India	

Curriculum Revision:	
Version:	2 nd
Drafted on (Month-Year):	June 2022
Last Reviewed on (Month-Year):	September 2022
Next Review on (Month-Year):	April 2023

Page 54 of 96

Faculty Name:	Science		
Programme Name:	M. Sc. Biotechnology (Industrial Biotechnology)		
Semester:	3	Academic Batch:	2022-23

Course Group	Board of Studies / Faculty Ownership	/ Course Code	Course Name		Teaching Scheme				Assessment/ Evaluation Type		Exte Ex Dura (H	ernal am ation rs.)	INT(T) Max./	EXT(T) Max./	INT(P) Max./	EXT(P) Max./	Grand Total Max./
					Т	Р	Tu	Cont. Hrs	Т	Р	Т	Р	Passing	Passing	Passing	Passing	Passing
Core	Biological Science		Drug Design and Development	4	3		1	4	Т		2		50/20	50/20			100/40
Core	Biological Science		Material Balance, Mass Transfer and Transport Process		3		1	4	Т		2		50/20	50/20			100/40
Core	Biological Science		Metabolic Engineering	4	3		1	4	Т		2		50/20	50/20			100/40
Core	Biological Science		Lab – I (Drug Design and Development and Material Balance, Mass Transfer and Transport Process)			8		8		Р		3			50/20	50/20	100/40
Core	Biological Science		Lab – II (Metabolic Engineering and Elective Course)			8		8		Р		3			50/20	50/20	100/40
	Biological Science		Environmental Engineering	4	3		1	4	Т		2		50/20	50/20			100/40
Elective	Biological Science		Nanobiotechnology & Applications	4	3		1	4	Т		2		50/20	50/20			100/40
(Any One)	Biological Science		Cancer Genetics	4	3		1	4	Т		2		50/20	50/20			100/40
	Biological Science		Validation, Documentation and cGMP	4	3		1	4	Т		2		50/20	50/20			100/40
Viva-voce	Biological Science		Comprehensive Viva-Voce	1												50/20	50/20
			Total	25													

T = Theory, P = Practical, Tu = Tutorial

Name & Sign [Chairman - Board of Studies]: Name & Sign [Dean / Director]:

Effective from Academic Batch: 2022-23

Programme M Sc Riotechnology (Industrial Riotechnology)		
	Programme:	M.Sc. Biotechnology (Industrial Biotechnology)

Semester:	3
-----------	---

- Course Code: To be given by the University
- Course Title: Drug Design and Development
- Course Group: CORE

Course Objectives: At the end of this course, the student should be able to identify

- 1 Approaches to find drug targets
- 2 Protein and receptors as drug targets
- 3 Drug design and optimizing homology model
- 4 Preclinical and clinical study, regulatory affairs

Teaching & Examination Scheme:

Conta	ct hours pe	er week	Course	urse Examination Marks (Maximum / Passin					
Locturo	Tutorial	Dractical	Credits	Credits Theory		J/V	Total		
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total	
3	1		4	50/20	50/20			100/40	

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	Finding a target: Choose a disease, finding a target, Identify a bioassay, Find a lead	15
	compound, Identify the pharmacophore, determine the structure of the lead	
	compound	
2	Protein as – drug target	15
	Protein - drug interaction (viz. Intramolecular bonding forces), Drug action at	
	protein, Peptide or protein as drugs, Monoclonal antibodies in medicinal chemistry,	
	Enzymes as – drug target : Enzymes as catalyst, The active sites of an enzymes,	
	Substrate binding at active sites, The catalytic role of enzymes, Regulations of	
	enzymes, Isoenzymes, Enzymes inhibitors and Enzymes kinetics and case study.	
	Receptor as – drug target:	
	Introduction to receptor & Receptors role, Neurotransmitter and hormones,	
	Change in the shape, Design of agonist, antagonist	

Page **55** of **96**

3	Drug Design and optimizing homology modelling Identify structure – activity relationship (SARs), Binding role of various functional groups,Strategies in drug design, Improve absorption, Making drugs less resistant to drug metabolism, Targeting drugs, Reducing toxicity, Prodrug, Drug alliances, Endogenous compounds as a drug.	15
4	Drug Development Preclinical and clinical study, Patenting and regulatory affairs, Chemical and process development, Design a manufacturing process, Register and market the drug.	15

1	An Introduction to Medicinal Chemistry; G.L. Patrick, 2nd Ed., Oxford University Press, ISBN
	0-19-850533-7
2	Wilson and Gisvold's Textbooks of Organic Medicinal and pharmaceutical chemistry, 11 th
	edition, by John H. Block and John M. Beale Jr.
3	Foye's Principles of Medicinal Chemistry, 5 th edition, by David A. Williams and Thomas L.
	Lenke.
4	Medicinal chemistry – A biochemical Approach – Oxford University Press, New York, Oxford
	by T. Nogradyedey.
5	Medicinal Chemistry, Principles and Practice; Ed. F.D. King, Royal Society of Chemistry, 1994,
6	Introductory Medicinal Chemistry; J.B. Taylor and P.D. Kennewell, Ellis Horwood, John -
	Wiley &Sons, New York.
7	Burger's Medicinal Chemistry & drug Discovery, 5th edition, 1997, Volume - 1, 2,3,4,5 -
	edited by Manfred E. Wolff, John – Wiley & Sons, New York, ISBN 0-417-27090-3.

Sup	Supplementary learning Material:			
1	https://nptel.ac.in/			
2	https://swayam.gov.in/			
3	https://diksha.gov.in/			
4	https://epathshala.nic.in/			
5	https://www.coursera.org/career-academy/?trk_ref=globalnav			

Pedagogy:
Direct Classroom teaching
Audiovisual
Assignments/Quiz
Feedback
Interactive participating methods
Seminar presentation

Page 56 of 96

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %				larks i	n %	R : Remembering; U : Understanding; A : Applying;
R	U	Α	Ν	Ε	С	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student will have clear understanding	25
	of different	
	Approaches to find drug targets	
CO-2	Proteinand receptors as drug targets	25
CO-3	Drug design and optimizing homology model	25
CO-4	Preclinical and clinical study, regulatory affairs	25

Curriculum Revision:				
Version:	2 nd			
Drafted on (Month-Year):	June 2022			
Last Reviewed on (Month-Year):	September 2022			
Next Review on (Month-Year):	April 2023			

Page **57** of **96**

Effective from Academic Batch: 2022-23

Programme:	M.Sc. Biotechnology (Industrial Biotechnology)
Semester:	3
Course Code:	To be given by the University
Course Title:	Material Balance, Mass Transfer & Transport Process
Course Group:	CORE

Course Objectives: At the end of this course, the student should have

- 1. Ability to solve problems involving reaction stoichiometry.
- 2. Ability to solve problems involving mass transfer due to diffusion, chemical reaction, and convection]
- 3. Ability to size some basic heat and mass transfer equipment
- 4. Ability to apply engineering judgment including an appreciation of cost and safety
- 5. Ability to solve mass transfer problems involving biological and environmental systems

Teaching & Examination Scheme:

Contact hours per week			Course	Exam	ination Ma	arks (Maxi	mum / Pas	sing)
Locturo	Tutorial	Practical	Credits	Theory		J/V/P*		Total
Lecture	Tutorial			Internal	External	Internal	External	Total
3	1		4	50/20	50/20			100/40

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	Mole concept: Matter and Its nature, concept of atom, molecules, element and	15
	compounds, Laws of chemical combination Unit& dimension, conservation of Mass	
	& Energy. Atomic weight, equivalent weight and molecular weight. Mathematical	
	problems	
2	Stoichiometry: Mole concept, Molar Masses, Percentage Yield and percentage	15
	composition, empirical & molecular formula. Chemical equation and reaction	
	stoichiometry. Mathematical problems	

Page 58 of 96

3	Material balances: Introduction, Process classification, Balance equation. Balance on continuous steady state process, Integral process. Material balance for unit operations like absorption, distillation, extraction, drying and evaporation. Humidification operation	15
4	Energy balances and heat Transfer: Definition, forms of energy, Transfer of energy, First law of Thermodynamics, Kinetic energy equation, Energy balance in	15
	open, close and reactive system, Fundamentals of Heat transfer, Different mode of Heat Transfer Mathematical problems	

List of Practicals / Tutorials: Material Balance, Mass Transfer & Transport (Elective)

1	Determination of K_L by sulphite oxidation method.
2	Ethanol production, distillation and estimation for percentage product yield estimation.
3	Citric acid fermentation and its estimation.
4	Fermentation time profile with respect to Glucose consumption and biomass formation by
	Yeast / Bacteria.
5	Determination of purity of fermentation products on the basis of its physical properties
	(Boiling point/Melting point, Density/Specific gravity, Viscosity etc.)

Reference Books:

1	Basic Principles & Calculations in Chemical Engineering, D.M.Himmelblau.,6th Ed., 2004
2	Stoichiometry, B.I.Bhatt&Thakore, Tata McGraw Hill Book Company, 5th Ed,2010
3	Chemical Process Principles, Vol.1, O.A.Hougen, K.M.Watson, R.A.Ragatz., Indian print, CBS
	Publishers,2nd Ed., 1995
4	Stoichiometry & Process Calculations, Narayanan K.V., &Lakshmikutti B., Prentice Hall, 2006
5	Process Calculations, V Venkataramani and N Anantharaman, PHI Learning, 2004
6	Chemical Process Calculations Manual, David CarrIgbinoghene, McGraw Hill
	Professional,2004
7	Optimization of Chemical Processes, T F Edgar, D M Himmelblau and L S Lasden, Tata
	McGraw Hill, 2001
8	Bioprocess Engineering Principles, Second Edition, Pauline M. Doran - Academic Press
	(2012)
9	Biochemical Engineering Fundamentals, James E. Bailey, David F. Ollis - McGraw-Hill
	Education (1986)

Supp	Supplementary learning Material:				
1	https://nptel.ac.in/				
2	https://swayam.gov.in/				
3	https://diksha.gov.in/				
4	https://epathshala.nic.in/				
5	https://www.coursera.org/career-academy/?trk_ref=globalnav				

Pedagogy:		
Direct Classroom teaching		

Page **59** of **96**

Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %				larks i	n %	R : Remembering; U : Understanding; A : Applying;		
R	U	Α	Ν	E	С	N: Analyzing; E: Evaluating; C: Creating		
25	25	15	15	15	05			
NT . [77]				1				

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student should have knowledge about	25
	Ability to solve problems involving reaction stoichiometry and mass	
	transfer due to diffusion, chemical reaction, and convection	
CO-2	Ability to size some basic heat and mass transfer equipment	25
CO-3	Ability to apply engineering judgment including an appreciation of cost	25
	and safety	
CO-4	Ability to solve mass transfer problems involving biological and	25
	environmental systems	

Curriculum Revision:			
Version:	2 nd		
Drafted on (Month-Year):	June 2022		
Last Reviewed on (Month-Year):	September 2022		
Next Review on (Month-Year):	April 2023		

Page 60 of 96

Effective from Academic Batch: 2022-23

Programme:	M. Sc. Biotechnology	v (Industrial Biotechnology
i i ogi umme.	The Divice monorgy	, (industrial biotechnology

3
2

- Course Code: To be given by the University
- Course Title: Metabolic Engineering
- Course Group: CORE

Course Objectives: At the end of this course, the student should be able know:

- 1 Metabolic regulation and its modification, enzyme kinetics
- 2 Metabolic flux balance analysis
- 3 Metabolic engineering strategies for production of PHA, solvents.
- 4 Metabolic engineering of yeast for substrate utilization, bioinformatics for reconstruction of metabolic network

Teaching & Examination Scheme:

Contact hours per week			Course	Exam	ination Ma	arks (Maxi	mum / Pas	sing)
Locturo	Tutorial Drastical		Credits	The	eory	J/V	/P*	Total
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total
3	1		4	50/20	50/20			100/40

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours		
1	Overview of metabolism and its regulation; Introduction to Metabolism and			
	Metabolic Engineering, Enzyme Kinetics, and inhibition kinetics, Regulation of			
	Metabolic pathways and Networks			
2	Metabolic flux balance analysis: Determine, Underdetermine and over-	15		
	determined systems, Metabolic Control analysis, Engineering of the central			
	metabolism of Escherichia coli, Metabolic engineering of Escherichia coli for the			
	production of aromatic compounds,			

Page **61** of **96**

ates, a 15 o acid
o acid
tibiotic
ancing
<i>um</i> for
uction, 15
ctional
cs for
tabolic

1	Metabolic Engineering by Sang Yup Lee and Eleftherios T Papoutsakis.(Power engineering:
	23). ISBN: 0-8247-4875-1.
2	Metabolic Engineering (Biotechnology and Bioprocessing Series) by Sang Yup Lee -
	Hardcover, 1st Edition, 450 pages, CRC (1999) ISBN: 082477390X.
3	Pathway Analysis and Optimization in Metabolic engineering by Eberhard O Voit ISBN
	0521800382.
4	Metabolic Engineering - by E Terry Papoutsakis Marcel Dekker Inc publisher (ISBN:
	9780824773908).
5	Metabolic Engineering: Principles and Methodologies by Gregory Stephanopoulos, Jens
	Nielsen, George Stephanopoulos Publisher: Elsevier Science & Technology Books Date
	Published: 1998 ISBN-13: 9780126662603 ISBN: 0126662606.
6	"Applied Metabolic Engineering: Theory and Practical Applications" by Mario Jolicoeur,
	Michel Perrier, Olivier Henry, Maria Klapa, Mathieu Cloutier; Published by Wiley–Blackwell
	(ISBN: 978-0470595404)
7	"Metabolic Engineering"by Sang Yup Lee, E. Terry Papoutsakis, Published by CRC Press.
	(ISBN 9780824773908)

Sup	Supplementary learning Material:				
1	https://nptel.ac.in/				
2	https://swayam.gov.in/				
3	https://diksha.gov.in/				
4	https://epathshala.nic.in/				
5	https://www.coursera.org/career-academy/?trk_ref=globalnav				

Pedagogy:

Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods

Page **62** of **96**

Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R : Remembering; U : Understanding; A : Applying;
R	U	Α	Ν	Ε	C	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student should have knowledge of	25
	Metabolic regulation and its modification, enzyme kinetics	
CO-2	Metabolic flux balance analysis	25
CO-3	Metabolic engineering strategies for production of PHA, solvents.	25
CO-4	Metabolic engineering of yeast for substrate utilization, bioinformatics	25
	for reconstruction of metabolic network	

Curriculum Revision:				
Version:	2 nd			
Drafted on (Month-Year):	June 2022			
Last Reviewed on (Month-Year):	September 2022			
Next Review on (Month-Year):	April 2023			

Page **63** of **96**

Effective from Academic Batch: 2022-23

- **Programme:** M. Sc. Biotechnology (Industrial Biotechnology)
- Semester:
- **Course Code:** To be given by the University

3

- **Course Title:** Lab - I (Drug Design and Development and Material Balance, Mass **Transfer & Transport Process)**
- **Course Group:** CORE

Teaching & Examination Scheme:

	Contact hours per week			Course	Examination Marks (Maximum / Pass				sing)			
	Locturo	Tutorial	Tutorial	Tutorial	Tutorial	Dractical	Credits	Theory		J/V/P*		Total
	Lecture		Practical		Internal	External	Internal	External	Total			
ĺ			8	4			50/20	50/20	100/40			
,	* L. Lurry, V. Viva, D. Dractical											

J: Jury; V: Viva; P: Practical

List of Practicals / Tutorials: Drug Design and Development

1	Retrieval of structure for PBP and Ramchandran plot.
2	Homology modelling.
3	Docking
4	Q SAR of selective compound

List of Practicals / Tutorials: Material Balance, Mass Transfer & Transport

1	Determination of K _L a by sulphite oxidation method.
2	Ethanol production, distillation and estimation for percentage product yield estimation.
3	Citric acid fermentation and its estimation.
4	Fermentation time profile with respect to Glucose consumption and biomass formation by
	Yeast / Bacteria.
5	Determination of purity of fermentation products on the basis of its physical properties
	(Boiling point/Melting point, Density/Specific gravity, Viscosity etc.)

Reference Books:

1	Homology modelling: tutorial https://youtu.be/Zb98mmfnsvg
2	Molecular Docking Tutorial: AUTODOCK VINA - PART 1
3	Molecular Docking with all new AutoDock Vina 1.2: https://youtu.be/TpofopDIIy4

Page 64 of 96

Supplementary learning Material:

1	https://nptel.ac.in/
2	https://swayam.gov.in/
3	https://diksha.gov.in/
4	https://epathshala.nic.in/
5	https://www.coursera.org/career-academy/?trk_ref=globalnav

Pedagogy:

Hands on training Discussion with students Demonstration Model Chart

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %						R : Remembering; U : Understanding; A : Applying;
R	U	Α	Ν	E	С	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Curriculum Revision:				
Version:	2 nd			
Drafted on (Month-Year):	June 2022			
Last Reviewed on (Month-Year):	September 2022			
Next Review on (Month-Year):	April 2023			

Page **65** of **96**

Effective from Academic Batch: 2022-23

Programme:	M. Sc. Biotechnology (Industrial Biotec	hnology)
i i ogi amme.	M. Se. Dioteennology (Industrial Dioteen	morogyj

Semester:	3
Jennester.	5

Course Code:	To be given	by the	University
course coue.	TO DE SIVEN	by the	University

- Course Title: Lab II (Metabolic Engineering and Elective Course)
- Course Group: CORE

Teaching & Examination Scheme:

Contact hours per week		Course	Examination Marks (Maximum / Passing)				sing)	
Locturo	Tutorial	Practical	Credits	The	eory	J/V	/P*	Total
Lecture	Tutorial			Internal	External	Internal	External	Total
		8	4			50/20	50/20	100/40

* J: Jury; V: Viva; P: Practical

List of Practicals / Tutorials: Drug Design and Development (Core)

1	Determination of K _m and V _{max} of enzyme
2	Screening and isolation of PHA producing microorganisms
3	Optimization of conditions for PHA production
4	Understanding of Flux balance analysis using appropriate examples
5	Reconstruction of metabolic network from genome annotation using bioinformatics tools
6	Flux balance analysis to redistribute flux using bioinformatics tools

List of Practicals / Tutorials: Environmental Engineering (Elective)

1	Chromatographic techniques – Paper chromatography in the identification of amino acids
	and plant pigments.
2	Determination of kinetic Coefficients in batch wastewater treatment process.
3	Checking of aerobic decomposition of industrial waste.
4	Checking of anaerobic decomposition of industrial waste.
5	Treatability studies of wastewater.
	A. Coagulation-Flocculation Jar Test of Water/Effluents.
	B. Sludge Volume Index (SVI).
	C. Food/Microorganisms (F/M) Ratio.
6	Determination of volatile fatty acids (VFAs).
7	Biofilm formation and its role in fixed film processes.

Page **66** of **96**

List of Practicals / Tutorials: Nanobiotechnology & Applications (Elective)

- **1** Synthesis of magnetic nanoparticles by coprecipitation method.
- **2** Biosynthesis of nanoparticles by microorganisms.
- **3** Preparation of quantum dots of CdS nanoparticles.
- **4** Activity profile of metal nanoparticles in terms of antimicrobial activity
- **5** Liposome synthesis and delivery of proteins in the field of nanomedicine.

List of Practicals / Tutorials: Cancer Genetics (Elective)

1	Preparation of Culture Media for Chromosomes analysis.
2	Human Blood Lymphocyte Culture
3	Genetic diagnosis of cancer by PCR
4	Visit to medical hospitals and report submission

List of Practicals / Tutorials: Validation, Documentation and cGMP (Elective)

1	Working knowledge, calibration of Laboratory equipment like pipette, burette,
	thermometer etc.
2	Validation of the Modern analytical Instruments like UV spectrometer, IR-
	spectrophotometer, HPLC, etc.
3	Validation of sterilization equipments e.g. Hot air oven, Autoclave.
4	Validation of Analytical procedures
	Analysis of pharmaceutical and cosmetic raw materials with the help of instruments.

Reference Books:

-	
1	Baird, Rodger, and Laura. Bridgewater. 2017. Standard Methods for the Examination of
	Water and Wastewater. Washington, D.C.: American Public Health Association.
2	CPCB (2008) Guidelines for water quality monitoring. Parivesh Bhawan,: Central Pollution
	Control Board, New Delhi. MINARS/27/2007-08.
3	A. Diaz, N. Rincon, A. Escorihuela, N. Fernandez, E. Chacin, and C. F. Forster, "A preliminary
	evaluation of turbidity removal by natural coagulants indigenous to Venezuela," Process
	Biochemistry, vol. 35, pp. 391-395, 11// 1999.
4	Metcalf & Eddy Inc., Tchobanoglous, G., Burton, F. L., Tsuchihashi, R., &Stensel, H. D.
	(2013). Wastewater engineering: Treatment and resource recovery (5th ed.). McGraw-Hill
	Professional.
5	APHA (American Public Health Association) Handbook, 1998
6	Constitutional Analysis by D. E. Rooney. Oxford University Press. New York (ISBN: 0-19-
	96384-3)

Sup	Supplementary learning Material:		
1	https://nptel.ac.in/		
2	https://swayam.gov.in/		
3	https://diksha.gov.in/		
4	https://epathshala.nic.in/		
5	https://www.coursera.org/career-academy/?trk_ref=globalnav		

Page 67 of 96

Pedagogy:						
Hands on training						
Discussion with students	Discussion with students					
Demonstration	Demonstration					
Model						
Chart						
Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):						
Distribution of Theory Marks in % R : Remembering; U : Understanding; A : Applying;						
R U A N E C	N: Analyzing; E: Evaluating; C: Creating					
25 25 15 15 15 05						

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Curriculum Revision:		
Version:	2 nd	
Drafted on (Month-Year):	June 2022	
Last Reviewed on (Month-Year):	September 2022	
Next Review on (Month-Year):	April 2023	

Page 68 of 96

Effective from Academic Batch: 2022-23

Programme: M. Sc. Biotechnology (Industrial Biotechnology)

Semester: 3

Course Code: To be given by the University

Course Title: Environmental Engineering

Course Group: ELECTIVE

Course Objectives: At the end of this course, the student should be able to:

- 1 Fundamentals of biological treatment
- 2 Principle of physical and chemical treatment methods
- 3 Advanced waste water treatment
- 4 Design of waste water treatment plants

Teaching & Examination Scheme:

Contact hours per week			Course	Exam	Examination Marks (Maximum / Pas			sing)
Locturo	Tutorial	Dura atti an l	Credits	The	Theory		J/V/P*	
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total
3	1		4	50/20	50/20			100/40

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	Fundamentals of Biological Treatment: Bacterial growth and energetic, Microbial	15
	Growth Kinetics: Rate of substrate utilization-Active Biomass-Net and Observed	
	Biomass, Calculation of Kinetic coefficients (k , K_{S} , Y and K_{d}), Modelling suspended	
	growth treatment processes: biomass balance, Aerobic biological oxidation,	
	Biological nitrification, Biological denitrification, Biological Phosphorus Removal.	
2	Physical unit operations: Screening, Flow equalization, Grit removal,	15
	Sedimentation, Membrane filtration processes: Reverse osmosis, Nano filtration,	
	ultra filtration, micro filtration and electrodialysis. Chemical unit processes:	
	Chemical coagulation, Chemical precipitation, Chemical oxidation and Chemical	
	neutralization. Chemical storage, feeding, piping and control system. Chemical	
	precipitation for phosphorus removal.	

Page **69** of **96**

3	Advanced wastewater treatment: Technologies used for advanced treatment,	15
	Removal of organic, inorganic, biological constituents, depth filtration, surface	
	filtration, adsorption, ion-exchange, advanced oxidation processes, Multi Effect	
	Evaporator (need for MEE, design details and principle of MEE, process and	
	operation handling and applications), Disinfection processes, Disinfection with	
	chlorine dioxide, ozone and UV radiation. Dechlorination: Need for dechlorination,	
	Dechlorination with chemicals. Advanced oxidation processes.	
4	Treatment and disposal of solids: Solids sources and characteristics. Disposal of	15
	solids, Composting: Process microbiology, Thickening, Dewatering: Centrifugation,	
	Belt-filter press, Filter presses, Sludge drying beds and lagoons. Heat Drying: Heat	
	transfer methods: process description. Conditioning: Chemical conditioning.	

1	Metcalf and Eddy, Wastewater Engineering, Treatment and Reuse, Tata McGraw Hill, New
	Delhi, 2003.
2	Qasim, S.R., Motley, E.M. and Zhu.G. Water works Engineering – Planning, Design and
	Operation, Prentice Hall, New Delhi, 2002
3	Lee, C.C. and Shun dar Lin, Handbook of Environmental Engineering Calculations, Mc Graw
	Hill, New York, 1999.
4	Hendricks, D. 'Water Treatment Unit Processes – Physical and Chemical' CRC Press,
	NewYork 2006

Sup	Supplementary learning Material:			
1	https://nptel.ac.in/			
2	https://swayam.gov.in/			
3	https://diksha.gov.in/			
4	https://epathshala.nic.in/			
5	https://www.coursera.org/career-academy/?trk_ref=globalnav			

Pedagogy: Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R : Remembering; U : Understanding; A : Applying;
R	U	Α	Ν	Ε	C	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Page **70** of **96**

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student should have knowledge about	25
	Fundamentals of biological treatment	
CO-2	Principle of physical and chemical treatment methods	25
CO-3	Advanced waste water treatment	25
CO-4	Design of waste water treatment plants	25

Curriculum Revision:				
Version:	2 nd			
Drafted on (Month-Year):	June 2022			
Last Reviewed on (Month-Year):	September 2022			
Next Review on (Month-Year):	April 2023			

Page **71** of **96**

Effective from Academic Batch: 2022-23

Programme: M. Sc. Biotechnology (Industrial Biotechnology)

- Semester: 3
- Course Code: To be given by the University
- Course Title: Nanobiotechnology & Applications
- Course Group: ELECTIVE

Course Objectives: To make the student aware about

- 1 Introduction to nanoworld, nanomaterials, their properties, top down and bottom up approaches
- 2 Preparation, characterization and properties of nanostructures materials
- 3 Biomolecules as nanostructures and their applications in nanotechnology
- 4 Biofunctionalization of nanomaterials

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passing)				
Locturo	Tutorial	Drea atti a a l	Credits	Theory		J/V/P*		Total
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total
3	1		4	50/20	50/20			100/40

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	Introduction to Nanoworld, Nanoscience and Nanotechnology, Introduction to	15
	nanomaterials, Properties of materials & nanomaterials, role of size in	
	nanomaterials, nanoparticles, semiconducting nanoparticles, nanowires,	
	nanoclusters, quantum wells, conductivity and enhanced catalytic activity	
	compared to the same materials in the macroscopic state From Biotechnology to	
	Nanobiotechnology. What is Nanobiotechnology? Information-Driven	
	Nanoassembly, Energetics, Top down and bottom up approach for building	
	Nanomaterial	

Page **72** of **96**

2	Introductory overview, preparation, characterization, and properties of	15
	nanostructured materials (e.g., metal nanoparticle, quantum dot, carbon	
	nanotube, polymeric nanocarrier, and silica nanoparticle); Chemical Routes for	
	Synthesis of Nanomaterials: Chemical precipitation and co-precipitation; Metal	
	nanocrystals by reduction,Sol-gel synthesis. Fabrication of Nanomaterials by	
	Physical Methods: -Iner tgas condensation, Plasma arc technique, Laser pyrolysis,	
	Ball Milling, Chemical vapor deposition and electro-deposition.	
3	Nanobiotechnology: Introduction, Biomolecules as nanostructures and their	15
	applications in nanotechnology viz. Biosensors, separation of cells and cell	
	organelles, drug delivery, gene therapy etc., Nanosensors-Miniaturization of	
	Biosensors, Nanomaterial Based Biosensors. Effect of Biosensor in biological and	
	physicochemical techniques, Applications of nanobiotechnology in early medical	
	diagnostics, drug targeting, drug delivery, nanosurgery and other biomedical field.	
4	Biofunctionalization of nanomaterials (e.g., cell, nucleic acid, and protein);	15
	applications of biofunctionalized nanomaterials (e.g., diagnostics and screening	
	technologies, drug delivery); Structural Principles of Nanobiotechnology	
	Construction of Nanomachines. The Raw Materials: Biomolecular Structure and	
	Stability, Protein Folding, Self-Assembly, Self-organization, Molecular Recognition,	
	Flexibility poses great challenges for the design of papohiomachine DNA	
	nanostructures DNA Templated Electronics Sequence -specific molecular	
	lithography Single Biomolocule Manipulation for Biogloctropics DNA as a	
	acmiganduston Applications in implente prostheses and tissue arginarius	
	semiconductor, Applications in implants, prostneses, and tissue engineering;	
	toxicity, health, and environmental issues	

1101	
1	Niemeyer, C.M. and Mirkin, C.A., Nanobiotechnology: Concepts, Applications, and
	Perspectives, John Wiley & Sons,2004.
2	Malsch, N.H., Biomedical Nanotechnology, Taylor & Francis,2005.
3	Jain, K.K., Nanobiotechnology in Molecular Diagnostics: Current Techniques and
	Applications, Horizon Bioscience,2006.
4	Rosanthal, S.J. and Wright, D.W., Nanobiotechnology Protocols, Humana Press,2005.
5	Nalwa, H.S., Handbook of Nanostructured Biomaterials and Their
	Applications in Nanobiotechnology, American Scientific Publishers, 2005.
6	Stroscio, M. and Dutta, M., Biological Nanostructures and Applications of
	Nanostructures in Biology: Electrical, Mechanical, and Optical Properties,
	Springer,2004.
7	Kumar, C.S.S.R., Biofunctionalization of Nanomaterials, John Wiley & Sons, 2006.
8	Kelsall, R., Hamley, I.W. and Geoghegan, M., Nanoscale Science and Technology, John
	Wiley & Sons,2005.
9	Poole, C.P. and Owens, F.J., Introduction to Nanotechnology, John Wiley & Sons, 2003.

Page **73** of **96**

10 Wilson, M., Kannangara, K., Smith, G., Simmons, M. and Raguse, B., Nanotechnology: Basic Science and Emerging Technologies, Chapman & Hall/CRC,2002.

Supplementary learning Material:

1 https://nptel.ac.in/

2 https://swayam.gov.in/

3 https://diksha.gov.in/

4 https://epathshala.nic.in/

5 https://www.coursera.org/career-academy/?trk_ref=globalnav

Pedagogy:

Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %						R : Remembering; U : Understanding; A : Applying;
R	U	Α	Ν	Ε	C	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student will be able to know about	25
	Nanoworld, nanomaterials, their properties, top down and bottom up	
	approaches	
CO-2	Preparation, characterization and properties of nanostructures	25
	materials	
CO-3	Biomolecules as nanostructures and their applications in	25
	nanotechnology	
CO-4	Biofunctionalization of nanomaterials	25

Curriculum Revision:							
Version:	2 nd						
Drafted on (Month-Year):	June 2022						
Last Reviewed on (Month-Year):	September 2022						
Next Review on (Month-Year):	April 2023						

Page 74 of 96

Effective from Academic Batch: 2022-23

Programme: M. Sc. Biotechnology (Industrial Biotechnology)

Semester:

Course Code: To be given by the University

Course Title: Cancer Genetics

3

Course Group: ELECTIVE

Course Objectives: The student should be able to:

- 1. Understand various types, properties and progression of cancers.
- 2. Provides information about various genetics and epigenetics factors causing cancers.
- 3. Focusing on tumor markers, Tumor viruses and Chromosomal defects in cancers.
- 4. Students understand selected familial cancers occurring in populations.

Teaching & Examination Scheme:

Contac	t hours pe	er week	Course Examination Marks (Maximum / Pa				mum / Pas	sing)
Locturo	Tutorial	Dractical	Credits	Theory		J/V/P*		Total
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total
3	1		4	50/20	50/20			100/40

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours					
1	Introduction to cancer, Types and properties of cancers, Cell transformation and						
	tumourigenesis						
	Genetic heterogeneity and clonal evolution, Cancer and environment: physical,						
	chemical and biological carcinogens						
2	Oncogenes, Tumour suppressor genes, DNA repair genes and genetic instability,	15					
	Epigenetic modifications, telomerase activity, centrosome malfunction						
3	Chromosomal aberrations in neoplasia, Tumour specific markers, Overview of	15					
	Tumor viruses and Cervical cancer						
4	Familial cancers: Retinoblastoma, Wilms' tumour, Prostate cancer, Colorectal	15					
	cancer, Breast cancer						

Page **75** of **96**

- **1** Molecular Biology of the Cell by Alberts *et al*
- 2 Genes VIII by Lewin
- **3** Molecular Cell Biology by Lodish*et al*

4 Molecular Genetics of Cancer by Stillman

5 Cell Biology by Cooper

Supplementary learning Material:

- **1** https://nptel.ac.in/
- 2 https://swayam.gov.in/
- 3 https://diksha.gov.in/

4 https://epathshala.nic.in/

5 https://www.coursera.org/career-academy/?trk_ref=globalnav

Pedagogy:

Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %						R : Remembering; U : Understanding; A : Applying;
R	U	Α	Ν	Ε	С	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student will be able to understand	25
	Various types, properties and progression of cancers.	
CO-2	Provides information about various genetics and epigenetics factors	25
	causing cancers.	
CO-3	Focusing on tumor markers, Tumor viruses and Chromosomal defects in	25
	cancers.	
CO-4	Students understand selected familial cancers occurring in populations.	25

Curriculum Revision:						
Version:	2 nd					
Drafted on (Month-Year):	June 2022					
Last Reviewed on (Month-Year):	September 2022					
Next Review on (Month-Year):	April 2023					

Page **76** of **96**

Effective from Academic Batch: 2022-23

Programme:	M. Sc. Biotechnology (Industrial Biotechnology	y)
0		, ,

Semester:	3
bennebteri	

Course Code: To be given by the University

Course Title: Validation, Documentation and cGMP

Course Group: ELECTIVE

Course Objectives: The student should be able to grasp

- 1. Concepts of quality, quality management and its implementation
- 2. Regulatory guidance's and guidelines like ICH, WHO and other relevant documents
- 3. Good Laboratory Practices, SOPs, handling of deviation
- 4. Documentation and relevant process related documents

Teaching & Examination Scheme:

Contact hours per week			Course	Exam	Examination Marks (Maximum / Pas			
Locturo	Tutorial	Practical	Credits	Theory		J/V/P*		Total
Lecture				Internal	External	Internal	External	Total
3	1		4	50/20	50/20			100/40

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	Building and facilities: Location, design, plant layout, maintenance and sanitation,	15
	environmental controls.	
	Utilities and services: air/gas, air handling and HVAC systems, sterile and non-	
	sterile area, aseptic process and sterilization methods, Water: purified, distilled	
	and sterile.	
2	Concept and philosophy of cGMP in manufacturing, processing, packaging and	15
	holding.	
	Organization and personal responsibilities, qualification, experience, training,	
	personal hygiene and clothing.	
3	Introduction, definition of validation, planning of validation – the consultant, task	15
	force, dedicated group, process characterization, validation protocol.	

Page **77** of **96**

4	Prerequisite of validation- design qualification (DQ), Installation qualification (IQ),	15
	operational qualification (OQ) and performance qualification (PQ). Validation	
	options, analytical methods validation, cleaning validation and revalidation.	
	Complaints and product recall.	

1	Robert A. Nash, Alfred H. Wachter, Pharmaceutical Process Validation, Vol. 129, Marcel
	Dekker Inc.
2	Sidney H. Willing and Murray M. Tuckerman, Good Manufacturing Practices for
	Pharmaceuticals, Vol. 16, Marcel Dekker Inc.
3	James Swarbrick, James C. Boylan, Encyclopedia by pharmaceutical technology, Marcel
	Dekker Inc.gtg
4	Sharma PP, How to practice GMPs, 3rd Ed., Vandana Publication.
5	Drug and Cosmetic Act and Rules (Governent of India).
6	Potdar MA, Current Good Manufacturing Practices Pharma-Med Press, Hyderabad.
7	Potdar MA, Pharmaceutical Quality Assurance, Nirali Prakashan, Pune.
8	

Supplementary learning Material:

1	https://nptel.ac.in/
2	https://swayam.gov.in/
3	https://diksha.gov.in/
4	https://epathshala.nic.in/
5	https://www.coursera.org/career-academy/?trk_ref=globalnav

Pedagogy:
Direct Classroom teaching
Audiovisual
Assignments/Quiz
Feedback
Interactive participating methods
Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R : Remembering; U : Understanding; A : Applying;
R	U	Α	Ν	Ε	C	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Page **78** of **96**

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student should be able to:	25
	Concepts of quality, quality management and its implementation	
CO-2	Regulatory guidance's and guidelines like ICH, WHO and other relevant	25
	documents	
CO-3	Good Laboratory Practices, SOPs, handling of deviation	25
CO-4	Documentation and relevant process related documents	25

Curriculum Revision:						
Version:	2 nd					
Drafted on (Month-Year):	June 2022					
Last Reviewed on (Month-Year):	September 2022					
Next Review on (Month-Year):	April 2023					

Page **79** of **96**

	Faculty Name:	Science		
NAV -	Programme Name:	M. Sc. Biotechnology (Industrial Biotechnology)		
Argie: Charstan Weiger Mandell (Claritita	Semester:	4 Acad	emic Batch:	2022-23

Course Group	Board of Studies / Faculty Ownership	Course Code	Course Name	Cr Teaching Sch		Teaching Scheme			Assess Evalu Ty	External Exam Duration (Hrs.)		INT(T) Max./	EXT(T) Max./	INT(P) Max./	EXT(P) Max./	Grand Total Max./	
					Т	Р	Tu	Cont. Hrs	Т	Р	Т	Р	rassing	Passing	Passing	Passing	Passing
Core	Biological Science		Biosafety, Bioethics & IPR	4	3		1	4	Т		3		50/20	50/20			100/40
Core	Biological Science		Bioinformatics	4	3		1	4	Т		3		50/20	50/20			100/40
Core	Biological Science		Lab – I (Biosafety, Bioethics & IPR and Bioinformatics)	4		8		8		Р		3			50/20	50/20	100/40
Elective	Biological Science		Dissertation	12												300/120	300/120
Viva-voce	Biological Science		Comprehensive Viva-Voce	1												50/20	50/20
			Total	25													

T = Theory, P = Practical, Tu = Tutorial

Name & Sign [Chairman - Board of Studies]: Name & Sign [Dean / Director]:

Effective from Academic Batch: 2022-23

Programme: M. Sc. Biotechnology (Industrial Biotechnology)

Semester: 4

Course Code: To be Given by University

Course Title: Biosafety, Bioethics & IPR

Course Group: CORE

Course Objectives:

- 1. Learn about the ethical issues in biomedical research and the guidelines to be followed
- 2. Information about various biosafety issues in biotechnological research and guidelines to be followed
- 3. Exposure about types of IR and patent system in India.
- 5. Role of WTO, TRIPS. Biodiversity and Indigenous knowledge.

Teaching & Examination Scheme:

Conta	ct hours pe	er week	Course	Exam	mum / Pas	sing)				
Locturo	Tutorial	Dractical	Credits	The	eory	J/V	/P*	Total		
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total		
3	1		4	50/20	50/20			100/40		

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	Bioethics	15
	Introduction, ethical conflicts in biological sciences - interference with nature,	
	bioethics in health care - patient confidentiality, informed consent, euthanasia,	
	artificial reproductive technologies, prenatal diagnosis, genetic screening, gene	
	therapy, transplantation. Bioethics in research – cloning and stem cell research,	
	Human and animal experimentation, animal rights/welfare, Agricultural	
	biotechnology - Genetically engineered food, environmental risk, labeling and	
	public opinion. Sharing benefits and protecting future generations - Protection of	
	environment and biodiversity – biopiracy. Blue Cross in India, Green Peace: Human	
	rights and responsibilities.	

Page **80** of **96**

2	Biosafety	15
	Biosafety & Biosecurity - introduction; historical background; introduction to	
	biological safety cabinets; primary containment for biohazards; biosafety levels;	
	GRAS organisms, biosafety levels of specific microorganisms; recommended	
	biosafety levels for infectious agents and infected animals; definition of GMOs &	
	LMOs; principles of safety assessment of transgenic plants – sequential steps in risk	
	assessment; concepts of familiarity and substantial equivalence; risk –	
	environmental risk assessment and food and feed safety assessment; problem	
	formulation – protection goals, compilation of relevant information, risk	
	characterization and development of analysis plan; risk assessment of transgenic	
	crops vs cisgenic plants or products derived from RNAi, genome editing tools.	
3	Introduction to IPR	15
	Introduction to intellectual property; types of IP: patents, trademarks, copyright &	
	related rights, industrial design, traditional knowledge, geographical indications,	
	protection of new GMOs; International framework for the protection of IP; IP as a	
	factor in R&D IPs of relevance to biotechnology and few case studies; introduction	
	to history of GATT, WTO, WIPO and TRIPS; plant variety protection and farmers	
	rights act; concept of 'prior art': invention in context of "prior art"; patent	
	databases - country-wise patent searches (USPTO, EPO, India); analysis and report	
	formation.	
4	National and International Regulations	15
	International regulations – Cartagena protocol, OECD consensus documents &	
	Codex Alimentarius; Indian regulations – EPA act and rules, guidance documents,	
	regulatory framework – RCGM, GEAC, IBSC and other regulatory bodies; Draft bill	
	of Biotechnology Regulatory authority of India - containments - biosafety levels	
	and category of rDNA experiments; field trails – biosafety research trials – standard	
	operating procedures - guidelines of state governments; GM labeling – Food Safety	
	& Standards Authority of India (FSSAI).	

1	M. K. Satish (2011) Bioethics and Biosafety IK International, (P) Ltd, New Delhi
2	Biotechnology and Safety Assessment (3rd Ed). Fleming, D.A., Hunt, D.L., (2000). Academic
	press. ISBN- 1555811804,9781555811808.
3	Biotechnology and safety assessment (3rd Ed). Thomas, J.A., Fuch, R.L. (1999). CRC press,
	Washington. ISBN: 1560327219, 9781560327219
4	Law and Strategy of biotechnological patents by Sibley. Butterworth publication. (2007)
	ISBN: 075069440, 9780750694445.
5	Intellectual property rights-Ganguli-Tata McGraw Hill. (2001) ISBN-10: 0074638602,
6	Intellectual Property Right-Wattal-Oxford Publication House. (1997) ISBN: 0195905024.
7	Biotechnology -A comprehensive treatise (Vol. 12). Legal economic and ethical dimensions
	VCH. (2nd Ed) ISBN-10 3527304320.
8	Encyclopedia of Bioethics 5 Vol set, (2003) ISBN-10: 0028657748.

Page **81** of **96**

9	Thomas, J.A., Fuch, R.L. (2002). Biotechnology and safety Assessment (3 rd Ed) Academic
	press.
10	H.K.Das. Text book of biotechnology 3rd edition.
11	Ganguli, P. (2001). Intellectual Property Rights: Unleashing the Knowledge Economy. New
	Delhi: Tata McGraw-Hill Pub.
12	National IPR Policy, Department of Industrial Policy & Promotion, Ministry of Commerce,
	GoI
13	Kuhse, H. (2010). Bioethics: An Anthology. Malden, MA: Blackwell.
14	Office of the Controller General of Patents, Design & Trademarks; Department of Industrial
	Policy & Promotion; Ministry of Commerce & Industry; Government of India.
	http://www.ipindia.nic.in/
15	Karen F. Greif and Jon F. Merz, Current Controversies in the Biological Sciences - Case
1.6	Studies of Policy Challenges from New Technologies, MIT Press
16	World Trade Organisation. http://www.wto.org
17	World Intellectual Property Organisation.
18	International Union for the Protection of New Varieties of Plants. http://www.upov.int
19	National Portal of India. http://www.archive.india.gov.in
20	National Biodiversity Authority.
21	Recombinant DNA Safety Guidelines, 1990 Department of Biotechnology, Ministry of Science
22	and Technology, Govt. of India. Retrieved from
22	Wolt, J. D., Keese, P., Raybould, A., Filzpatrick, J. W., Burachik, M., Gray, A., Wu, F. (2009).
	Transgonic Possarch 10(2) 425 426 doi:10.1007/s11249.000.0221.0
23	Craig W Tenfer M Degrassi C & Binandelli D (2008) An Overview of Ceneral Features of
23	Risk Assessments of Genetically Modified Crons Funbytica 164(3) 853- 880
	doi:10.1007/s10681-007-9643-8
24	Guidelines for Safety Assessment of Foods Derived from Genetically Engineered Plants.
-	2008.
25	Guidelines and Standard Operating Procedures for Confined Field Trials of Regulated
	Genetically Engineered Plants. 2008.
26	Alonso, G. M. (2013). Safety Assessment of Food and Feed Derived from GM Crops: Using
	Problem Formulation to Ensure "Fit for Purpose" Risk Assessments. Retrieved from

Sup	plementary learning Material:
1	http://www.envfor.nic.in/divisions/csurv/geac/annex-5.pdf
2	http://biosafety.icgeb.org/inhousepublicationscollectionbiosafetyreviews.
3	http://www.igmoris.nic.in/guidelines1.asp
4	http://www.nbaindia.org
5	http://www.wipo.int

Pedagogy: Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods

Page **82** of **96**

Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Dist	tributio	on of T	heory M	larks i	n %	R : Remembering; U : Understanding; A : Applying;
R	U	Α	Ν	Ε	C	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	At the end of this course, the student should have knowledge about	25
	The ethical issues in biomedical research and the guidelines to be followed	
CO-2	Students will be able to know information about various biosafety	25
	issues in biotechnological research and guidelines to be followed	
CO-3	Students will be able to be familiar with types of IR and patent system in	25
	India.	
CO-4	Students will be able to elaborate the role of WTO, TRIPS. Biodiversity	25
	and Indigenous knowledge.	

Curriculum Revision:		
Version:	2 nd	
Drafted on (Month-Year):	June 2022	
Last Reviewed on (Month-Year):	September 2022	
Next Review on (Month-Year):	April 2023	

Page **83** of **96**

Effective from Academic Batch: 2022-23

Programme: M. Sc. Biotechnology (Industrial Biotechnology)

Semester:

Course Code: To be Given by University

4

- Course Title: Bioinformatics
- Course Group: CORE

Course Objectives:

- 1. Knowledge of various databases and their uses. Concepts of scoring matrices and sequence alignment.
- 2. Various methods for prediction of gene structure in Prokaryotes and Eukaryotes, methods for complete transcript cataloguing and gene discovery
- 3. Concepts and tools for genomics and comparative genomics, phylogenetic analysis by various types of trees and methods
- 4. Learning about the tools for proteomics, different algorithms for prediction of secondary & 3D structure of protein and protein folding.

Teaching & Examination Scheme:

Contact hours per week			Course	Exam	ination Ma	arks (Maxi	mum / Pas	sing)
Lastura Tutorial Drastic		Dractical	Credits	The	eory	J/V	/P*	Total
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total
3	1		4	50/20	50/20			100/40

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	UNIT I: Introduction to Bioinformatics:-	15
	Overview, Internet and bioinformatics, Applications.	
	Introduction and Bioinformatics Resources: Knowledge of various databases and	
	bioinformatics tools available at these resources, the major content of the	
	databases, Literature databases:	
	Nucleic acid sequence databases: GenBank, EMBL, DDBJ	
	Protein sequence databases: SWISS-PROT, PDB, SCOP, CATH	
	Genome Databases at NCBI, EBI,	
	Other Databases of Patterns/Motifs/System Biology (Gene and protein network	
	database and resources)	

Page **84** of **96**

	Various file formats for bio-molecular sequences: genbank, fasta, gcg, msf, nbrf, pir	
	etc.	
	Basic concepts of sequence similarity, identity and homology, Definitions of	
	homologues, orthologues, paralogues, xenologus.	
2	Sequence analysis:-	15
	Scoring matrices: basic concept of a scoring matrix, PAM and BLOSUM series.	
	Sequence-based Database Searches: what are sequence-based database searches.	
	BLAST and FASTA algorithms, various versions of basic BLAST and FASTA.	
	Pairwise and Multiple sequence alignments: basic concepts of sequence alignment	
	Needleman & Wuncsh Smith & Waterman algorithms for nairwise alignments	
	Progressive and hierarchical algorithms for MSA	
2		1 5
3	Functional genomics:-	15
	Use of pairwise alignments and Multiple sequence alignment for analysis of Nucleic	
	acid and protein sequences and interpretation of results.	
	Multiple sequence Alignment: CLUSTAL W	
	Putting together all of the information into a genome database.	
	Definition and description of phylogenetic trees and various types of trees,	
	Molecular basis of evolution, Method of construction of Phylogenetic trees:	
	Distance based method (UPGMA, NJ), Character Based Method (Maximum	
	Parsimony).	
4	Molecular Modelling:-	15
	Structural classification of proteins, Protein structure analysis structure alignment	
	and comparison, Classes, folds, motif, domain Secondary structure and evaluation:	
	algorithms of Chou Fasman, GOR methods. Tertiary Structure: basic principles and	
	protocols, Methods to study 3D structure.	
	Active site prediction, Protein folding, Protein modeling and drug design.	
L		

1	Mount DW, Bioinformatics: Sequence and Genome Analysis (2nd edition). Spring Harbor
	Press.
2	Arthur Lesk. Introduction to Bioinformatics. Oxford Uni. Press.
3	Rastogi. Bioinformatics : Methods and Applications.
4	Ghosh Z and Mallick B, Bioinformatics - Principles and Applications, Oxford University. Press
	(First Print: 2008; Second Print: 2009)
5	Creighton TE, Protein Structure: A Practical Approach
6	Creighton TE, Protein Structure and Molecular Properties, Freeman
7	Leach AR, Molecular Modeling : Principles and Application
8	Bourne PE, Weissig H, Structural Bioinformatics, Wiley Schlick T. Molecular Modelling and
	Simulation An Inter disciplinary Guide, Springer
9	Pevzner PA Computational Molecular BiologyAn Algorithmic Approach. Prentice Hall
10	Thomas Lengauer ,Bioinformatics - From Genomes to Therapies: Volume 1

Page **85** of **96**

Sup	plementary learning Material:
1	https://www.ncbi.nlm.nih.gov/
2	https://www.embl.org/
3	https://www.ddbj.nig.ac.jp/index-e.html
4	https://www.rcsb.org/
5	https://www.expasy.org/resources/uniprotkb-swiss-prot

Pedagogy:

Direct Classroom teaching Audiovisual Assignments/Quiz Feedback Interactive participating methods Seminar presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %						R : Remembering; U : Understanding; A : Applying;						
R	U A N E C			Ε	C	N: Analyzing; E: Evaluating; C: Creating						
25	25	15	15	15	05							

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Students will be able to understand the knowledge of various databases	25
	and their uses. Concepts of scoring matrices and sequence alignment for	
	analysis of Nucleic acid and protein sequences.	
CO-2	Students will be able to aware of the various methods for prediction of	25
	gene structure in Prokaryotes and Eukaryotes, computational RNA	
	Structure analysis and various methods for complete transcript	
	cataloguing and gene discovery.	
CO-3	Students will be able to know about various tools for genomics and	25
	comparative genomics, phylogenetic analysis by various types of trees	
	and methods.	
CO-4	Students will be able to recognize the tools for proteomics, different	25
	algorithms for prediction of secondary & 3D structure of protein and	
	protein folding.	

Curriculum Revision:				
Version:	2 nd			
Drafted on (Month-Year):	June 2022			
Last Reviewed on (Month-Year):	September 2022			
Next Review on (Month-Year):	April 2023			

Page 86 of 96

Effective from Academic Batch: 2022-23

Programme: M. Sc. Biotechnology (Industrial Biotechnology)

4

Course Code:	To be Given by University
dourbe doubl	

Course Title: Lab – I (Biosafety, Bioethics & IPR and Bioinformatics)

Course Group: CORE

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passing)				sing)
Locturo	Tutorial Dractica		Credits	The	eory	J/V	/P*	Total
Lecture	Tutoriai	Practical		Internal	External	Internal	External	Total
		8	4			50/20	50/20	100/40

* J: Jury; V: Viva; P: Practical

List of Practicals / Tutorials: Biosafety, Bioethics & IPR

1	Good lab Practices
2	Handling of rDNA in laboratory
3	Disposal of Hazardous waste in laboratory
4	Patent Filing

List of Practicals / Tutorials: Bioinformatics

1	Introduction of different database of NCBI,
2	Protein Sequence Databases (PIR, SwissProt)
3	Introduction of PIR, ExPasy, EMBL, SCOP, CATH
4	Database introduction-Prosite, BLOCKS, Pfam/ Prodom
5	Introduction of Genome browser – UCSC, ensemble, vista
6	Use of L-ALIGN
7	Alignment using BLAST
8	Clustal-W and Phylogenetic Analysis
9	Visualization by RASMOL & SPDBV
10	Homology modeling
11	Docking
12	Ramchandran Plot

Page **87** of **96**

Sup	Supplementary learning Material:					
1	https://rcb.res.in/upload/Biosafety_Guidelines.pdf					
2	https://dbtindia.gov.in/guidelines-biosafety					
3	https://ipindia.gov.in/					
4	"Bioinformatics For Beginners: A Laboratory Manual" by Department Of Computer Science					
	PSGR, Published by Blue Hill Publishers. (ISBN: 9788193708828)					
5	"Bioinformatics: A Practical Guide to theAnalysis of Genes and Proteins" by Andreas D.					
	Baxevanis;Published by A John Wiley & Sons, Inc., Publication(ISBN: 0471383902)					
6	"Essential Bioinformatics" by Jin Xiong; Published by Cambridge University					
	Press.(ISBN:978-0521600828)					

Pedagogy:	
Hands on training	
Discussion with students	
Demonstration	
Model	
Chart	

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R : Remembering; U : Understanding; A : Applying;
R	U	Α	Ν	Ε	С	N: Analyzing; E: Evaluating; C: Creating
25	25	15	15	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Curriculum Revision:				
Version:	2 nd			
Drafted on (Month-Year):	June 2022			
Last Reviewed on (Month-Year):	September 2022			
Next Review on (Month-Year):	April 2023			

Page **88** of **96**